• lpc.h
  • /* libFLAC - Free Lossless Audio Codec library
     * Copyright (C) 2000-2009  Josh Coalson
     * Copyright (C) 2011-2025  Xiph.Org Foundation
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * - Redistributions of source code must retain the above copyright
     * notice, this list of conditions and the following disclaimer.
     *
     * - Redistributions in binary form must reproduce the above copyright
     * notice, this list of conditions and the following disclaimer in the
     * documentation and/or other materials provided with the distribution.
     *
     * - Neither the name of the Xiph.org Foundation nor the names of its
     * contributors may be used to endorse or promote products derived from
     * this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifndef FLAC__PRIVATE__LPC_H
    #define FLAC__PRIVATE__LPC_H
    
    #ifdef HAVE_CONFIG_H
    #include <config.h>
    #endif
    
    #include "private/cpu.h"
    #include "private/float.h"
    #include "FLAC/format.h"
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    
    /*
     *	FLAC__lpc_window_data()
     *	--------------------------------------------------------------------
     *	Applies the given window to the data.
     *  OPT: asm implementation
     *
     *	IN in[0,data_len-1]
     *	IN window[0,data_len-1]
     *	OUT out[0,lag-1]
     *	IN data_len
     */
    void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len);
    void FLAC__lpc_window_data_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len);
    void FLAC__lpc_window_data_partial(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift);
    void FLAC__lpc_window_data_partial_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift);
    
    /*
     *	FLAC__lpc_compute_autocorrelation()
     *	--------------------------------------------------------------------
     *	Compute the autocorrelation for lags between 0 and lag-1.
     *	Assumes data[] outside of [0,data_len-1] == 0.
     *	Asserts that lag > 0.
     *
     *	IN data[0,data_len-1]
     *	IN data_len
     *	IN 0 < lag <= data_len
     *	OUT autoc[0,lag-1]
     */
    void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    #ifndef FLAC__NO_ASM
    #  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
    #    ifdef FLAC__SSE2_SUPPORTED
    void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    #    endif
    #  endif
    #  if defined FLAC__CPU_X86_64 && FLAC__HAS_X86INTRIN
    #    ifdef FLAC__FMA_SUPPORTED
    void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_12(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_fma_lag_16(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    #    endif
    #  endif
    #if defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN && FLAC__HAS_A64NEONINTRIN
    void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_8(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_10(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    void FLAC__lpc_compute_autocorrelation_intrin_neon_lag_14(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    #endif
    #endif /* FLAC__NO_ASM */
    
    /*
     *	FLAC__lpc_compute_lp_coefficients()
     *	--------------------------------------------------------------------
     *	Computes LP coefficients for orders 1..max_order.
     *	Do not call if autoc[0] == 0.0.  This means the signal is zero
     *	and there is no point in calculating a predictor.
     *
     *	IN autoc[0,max_order]                      autocorrelation values
     *	IN 0 < max_order <= FLAC__MAX_LPC_ORDER    max LP order to compute
     *	OUT lp_coeff[0,max_order-1][0,max_order-1] LP coefficients for each order
     *	*** IMPORTANT:
     *	*** lp_coeff[0,max_order-1][max_order,FLAC__MAX_LPC_ORDER-1] are untouched
     *	OUT error[0,max_order-1]                   error for each order (more
     *	                                           specifically, the variance of
     *	                                           the error signal times # of
     *	                                           samples in the signal)
     *
     *	Example: if max_order is 9, the LP coefficients for order 9 will be
     *	         in lp_coeff[8][0,8], the LP coefficients for order 8 will be
     *			 in lp_coeff[7][0,7], etc.
     */
    void FLAC__lpc_compute_lp_coefficients(const double autoc[], uint32_t *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], double error[]);
    
    /*
     *	FLAC__lpc_quantize_coefficients()
     *	--------------------------------------------------------------------
     *	Quantizes the LP coefficients.  NOTE: precision + bits_per_sample
     *	must be less than 32 (sizeof(FLAC__int32)*8).
     *
     *	IN lp_coeff[0,order-1]    LP coefficients
     *	IN order                  LP order
     *	IN FLAC__MIN_QLP_COEFF_PRECISION < precision
     *	                          desired precision (in bits, including sign
     *	                          bit) of largest coefficient
     *	OUT qlp_coeff[0,order-1]  quantized coefficients
     *	OUT shift                 # of bits to shift right to get approximated
     *	                          LP coefficients.  NOTE: could be negative.
     *	RETURN 0 => quantization OK
     *	       1 => coefficients require too much shifting for *shift to
     *              fit in the LPC subframe header.  'shift' is unset.
     *         2 => coefficients are all zero, which is bad.  'shift' is
     *              unset.
     */
    int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], uint32_t order, uint32_t precision, FLAC__int32 qlp_coeff[], int *shift);
    
    /*
     *	FLAC__lpc_compute_residual_from_qlp_coefficients()
     *	--------------------------------------------------------------------
     *	Compute the residual signal obtained from sutracting the predicted
     *	signal from the original.
     *
     *	IN data[-order,data_len-1] original signal (NOTE THE INDICES!)
     *	IN data_len                length of original signal
     *	IN qlp_coeff[0,order-1]    quantized LP coefficients
     *	IN order > 0               LP order
     *	IN lp_quantization         quantization of LP coefficients in bits
     *	OUT residual[0,data_len-1] residual signal
     */
    void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit(const FLAC__int64 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #ifndef FLAC__NO_ASM
    #   ifdef FLAC__CPU_ARM64
    void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #   endif
    
    #  if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64) && FLAC__HAS_X86INTRIN
    #    ifdef FLAC__SSE2_SUPPORTED
    void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #    endif
    #    ifdef FLAC__SSE4_1_SUPPORTED
    void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #    endif
    #    ifdef FLAC__AVX2_SUPPORTED
    void FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    void FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #    endif
    #  endif
    #endif
    
    #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
    
    FLAC__uint64 FLAC__lpc_max_prediction_value_before_shift(uint32_t subframe_bps, const FLAC__int32 qlp_coeff[], uint32_t order);
    uint32_t FLAC__lpc_max_prediction_before_shift_bps(uint32_t subframe_bps, const FLAC__int32 qlp_coeff[], uint32_t order);
    uint32_t FLAC__lpc_max_residual_bps(uint32_t subframe_bps, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization);
    
    /*
     *	FLAC__lpc_restore_signal()
     *	--------------------------------------------------------------------
     *	Restore the original signal by summing the residual and the
     *	predictor.
     *
     *	IN residual[0,data_len-1]  residual signal
     *	IN data_len                length of original signal
     *	IN qlp_coeff[0,order-1]    quantized LP coefficients
     *	IN order > 0               LP order
     *	IN lp_quantization         quantization of LP coefficients in bits
     *	*** IMPORTANT: the caller must pass in the historical samples:
     *	IN  data[-order,-1]        previously-reconstructed historical samples
     *	OUT data[0,data_len-1]     original signal
     */
    void FLAC__lpc_restore_signal(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
    void FLAC__lpc_restore_signal_wide(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 data[]);
    void FLAC__lpc_restore_signal_wide_33bit(const FLAC__int32 residual[], uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int64 data[]);
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    
    /*
     *	FLAC__lpc_compute_expected_bits_per_residual_sample()
     *	--------------------------------------------------------------------
     *	Compute the expected number of bits per residual signal sample
     *	based on the LP error (which is related to the residual variance).
     *
     *	IN lpc_error >= 0.0   error returned from calculating LP coefficients
     *	IN total_samples > 0  # of samples in residual signal
     *	RETURN                expected bits per sample
     */
    double FLAC__lpc_compute_expected_bits_per_residual_sample(double lpc_error, uint32_t total_samples);
    double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(double lpc_error, double error_scale);
    
    /*
     *	FLAC__lpc_compute_best_order()
     *	--------------------------------------------------------------------
     *	Compute the best order from the array of signal errors returned
     *	during coefficient computation.
     *
     *	IN lpc_error[0,max_order-1] >= 0.0  error returned from calculating LP coefficients
     *	IN max_order > 0                    max LP order
     *	IN total_samples > 0                # of samples in residual signal
     *	IN overhead_bits_per_order          # of bits overhead for each increased LP order
     *	                                    (includes warmup sample size and quantized LP coefficient)
     *	RETURN [1,max_order]                best order
     */
    uint32_t FLAC__lpc_compute_best_order(const double lpc_error[], uint32_t max_order, uint32_t total_samples, uint32_t overhead_bits_per_order);
    
    #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
    
    #endif