• lpc.c
  • /* libFLAC - Free Lossless Audio Codec library
     * Copyright (C) 2000-2009  Josh Coalson
     * Copyright (C) 2011-2025  Xiph.Org Foundation
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * - Redistributions of source code must retain the above copyright
     * notice, this list of conditions and the following disclaimer.
     *
     * - Redistributions in binary form must reproduce the above copyright
     * notice, this list of conditions and the following disclaimer in the
     * documentation and/or other materials provided with the distribution.
     *
     * - Neither the name of the Xiph.org Foundation nor the names of its
     * contributors may be used to endorse or promote products derived from
     * this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifdef HAVE_CONFIG_H
    #  include <config.h>
    #endif
    
    #include <math.h>
    #include <stdlib.h>
    
    #include "FLAC/assert.h"
    #include "FLAC/format.h"
    #include "share/compat.h"
    #include "private/bitmath.h"
    #include "private/lpc.h"
    #include "private/macros.h"
    
    #if !defined(NDEBUG) || defined FLAC__OVERFLOW_DETECT || defined FLAC__OVERFLOW_DETECT_VERBOSE
    #include <stdio.h>
    #endif
    
    /* OPT: #undef'ing this may improve the speed on some architectures */
    #define FLAC__LPC_UNROLLED_FILTER_LOOPS
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    
    #if defined(_MSC_VER) && (_MSC_VER < 1800)
    #include <float.h>
    static inline long int lround(double x) {
    	return (long)(x + _copysign(0.5, x));
    }
    #elif !defined(HAVE_LROUND) && defined(__GNUC__)
    static inline long int lround(double x) {
    	return (long)(x + __builtin_copysign(0.5, x));
    }
    /* If this fails, we are in the presence of a mid 90's compiler, move along... */
    #endif
    
    void FLAC__lpc_window_data(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len)
    {
    	uint32_t i;
    	for(i = 0; i < data_len; i++)
    		out[i] = in[i] * window[i];
    }
    
    void FLAC__lpc_window_data_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len)
    {
    	uint32_t i;
    	for(i = 0; i < data_len; i++)
    		out[i] = in[i] * window[i];
    }
    
    void FLAC__lpc_window_data_partial(const FLAC__int32 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift)
    {
    	uint32_t i, j;
    	if((part_size + data_shift) < data_len){
    		for(i = 0; i < part_size; i++)
    			out[i] = in[data_shift+i] * window[i];
    		i = flac_min(i,data_len - part_size - data_shift);
    		for(j = data_len - part_size; j < data_len; i++, j++)
    			out[i] = in[data_shift+i] * window[j];
    		if(i < data_len)
    			out[i] = 0.0f;
    	}
    }
    
    void FLAC__lpc_window_data_partial_wide(const FLAC__int64 in[], const FLAC__real window[], FLAC__real out[], uint32_t data_len, uint32_t part_size, uint32_t data_shift)
    {
    	uint32_t i, j;
    	if((part_size + data_shift) < data_len){
    		for(i = 0; i < part_size; i++)
    			out[i] = in[data_shift+i] * window[i];
    		i = flac_min(i,data_len - part_size - data_shift);
    		for(j = data_len - part_size; j < data_len; i++, j++)
    			out[i] = in[data_shift+i] * window[j];
    		if(i < data_len)
    			out[i] = 0.0f;
    	}
    }
    
    void FLAC__lpc_compute_autocorrelation(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[])
    {
    	/* a readable, but slower, version */
    #if 0
    	double d;
    	uint32_t i;
    
    	FLAC__ASSERT(lag > 0);
    	FLAC__ASSERT(lag <= data_len);
    
    	/*
    	 * Technically we should subtract the mean first like so:
    	 *   for(i = 0; i < data_len; i++)
    	 *     data[i] -= mean;
    	 * but it appears not to make enough of a difference to matter, and
    	 * most signals are already closely centered around zero
    	 */
    	while(lag--) {
    		for(i = lag, d = 0.0; i < data_len; i++)
    			d += data[i] * (double)data[i - lag];
    		autoc[lag] = d;
    	}
    #endif
    	if (data_len < FLAC__MAX_LPC_ORDER || lag > 16) {
    		/*
    		 * this version tends to run faster because of better data locality
    		 * ('data_len' is usually much larger than 'lag')
    		 */
    		double d;
    		uint32_t sample, coeff;
    		const uint32_t limit = data_len - lag;
    
    		FLAC__ASSERT(lag > 0);
    		FLAC__ASSERT(lag <= data_len);
    
    		for(coeff = 0; coeff < lag; coeff++)
    			autoc[coeff] = 0.0;
    		for(sample = 0; sample <= limit; sample++) {
    			d = data[sample];
    			for(coeff = 0; coeff < lag; coeff++)
    				autoc[coeff] += d * data[sample+coeff];
    		}
    		for(; sample < data_len; sample++) {
    			d = data[sample];
    			for(coeff = 0; coeff < data_len - sample; coeff++)
    				autoc[coeff] += d * data[sample+coeff];
    		}
    	}
    	else if(lag <= 8) {
    		#undef MAX_LAG
    		#define MAX_LAG 8
    		#include "deduplication/lpc_compute_autocorrelation_intrin.c"
    	}
    	else if(lag <= 12) {
    		#undef MAX_LAG
    		#define MAX_LAG 12
    		#include "deduplication/lpc_compute_autocorrelation_intrin.c"
    	}
    	else if(lag <= 16) {
    		#undef MAX_LAG
    		#define MAX_LAG 16
    		#include "deduplication/lpc_compute_autocorrelation_intrin.c"
    	}
    
    }
    
    void FLAC__lpc_compute_lp_coefficients(const double autoc[], uint32_t *max_order, FLAC__real lp_coeff[][FLAC__MAX_LPC_ORDER], double error[])
    {
    	uint32_t i, j;
    	double r, err, lpc[FLAC__MAX_LPC_ORDER];
    
    	FLAC__ASSERT(0 != max_order);
    	FLAC__ASSERT(0 < *max_order);
    	FLAC__ASSERT(*max_order <= FLAC__MAX_LPC_ORDER);
    	FLAC__ASSERT(autoc[0] != 0.0);
    
    	err = autoc[0];
    
    	for(i = 0; i < *max_order; i++) {
    		/* Sum up this iteration's reflection coefficient. */
    		r = -autoc[i+1];
    		for(j = 0; j < i; j++)
    			r -= lpc[j] * autoc[i-j];
    		r /= err;
    
    		/* Update LPC coefficients and total error. */
    		lpc[i]=r;
    		for(j = 0; j < (i>>1); j++) {
    			double tmp = lpc[j];
    			lpc[j] += r * lpc[i-1-j];
    			lpc[i-1-j] += r * tmp;
    		}
    		if(i & 1)
    			lpc[j] += lpc[j] * r;
    
    		err *= (1.0 - r * r);
    
    		/* save this order */
    		for(j = 0; j <= i; j++)
    			lp_coeff[i][j] = (FLAC__real)(-lpc[j]); /* negate FIR filter coeff to get predictor coeff */
    		error[i] = err;
    
    		/* see SF bug https://sourceforge.net/p/flac/bugs/234/ */
    		if(err == 0.0) {
    			*max_order = i+1;
    			return;
    		}
    	}
    }
    
    int FLAC__lpc_quantize_coefficients(const FLAC__real lp_coeff[], uint32_t order, uint32_t precision, FLAC__int32 qlp_coeff[], int *shift)
    {
    	uint32_t i;
    	double cmax;
    	FLAC__int32 qmax, qmin;
    
    	FLAC__ASSERT(precision > 0);
    	FLAC__ASSERT(precision >= FLAC__MIN_QLP_COEFF_PRECISION);
    
    	/* drop one bit for the sign; from here on out we consider only |lp_coeff[i]| */
    	precision--;
    	qmax = 1 << precision;
    	qmin = -qmax;
    	qmax--;
    
    	/* calc cmax = max( |lp_coeff[i]| ) */
    	cmax = 0.0;
    	for(i = 0; i < order; i++) {
    		const double d = fabs(lp_coeff[i]);
    		if(d > cmax)
    			cmax = d;
    	}
    
    	if(cmax <= 0.0) {
    		/* => coefficients are all 0, which means our constant-detect didn't work */
    		return 2;
    	}
    	else {
    		const int max_shiftlimit = (1 << (FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN-1)) - 1;
    		const int min_shiftlimit = -max_shiftlimit - 1;
    		int log2cmax;
    
    		(void)frexp(cmax, &log2cmax);
    		log2cmax--;
    		*shift = (int)precision - log2cmax - 1;
    
    		if(*shift > max_shiftlimit)
    			*shift = max_shiftlimit;
    		else if(*shift < min_shiftlimit)
    			return 1;
    	}
    
    	if(*shift >= 0) {
    		double error = 0.0;
    		FLAC__int32 q;
    		for(i = 0; i < order; i++) {
    			error += lp_coeff[i] * (1 << *shift);
    			q = lround(error);
    
    #ifdef FLAC__OVERFLOW_DETECT
    			if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
    				flac_fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
    			else if(q < qmin)
    				flac_fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
    #endif
    			if(q > qmax)
    				q = qmax;
    			else if(q < qmin)
    				q = qmin;
    			error -= q;
    			qlp_coeff[i] = q;
    		}
    	}
    	/* negative shift is very rare but due to design flaw, negative shift is
    	 * not allowed in the decoder, so it must be handled specially by scaling
    	 * down coeffs
    	 */
    	else {
    		const int nshift = -(*shift);
    		double error = 0.0;
    		FLAC__int32 q;
    #ifndef NDEBUG
    		flac_fprintf(stderr,"FLAC__lpc_quantize_coefficients: negative shift=%d order=%u cmax=%f\n", *shift, order, cmax);
    #endif
    		for(i = 0; i < order; i++) {
    			error += lp_coeff[i] / (1 << nshift);
    			q = lround(error);
    #ifdef FLAC__OVERFLOW_DETECT
    			if(q > qmax+1) /* we expect q==qmax+1 occasionally due to rounding */
    				flac_fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q>qmax %d>%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmax,*shift,cmax,precision+1,i,lp_coeff[i]);
    			else if(q < qmin)
    				flac_fprintf(stderr,"FLAC__lpc_quantize_coefficients: quantizer overflow: q<qmin %d<%d shift=%d cmax=%f precision=%u lpc[%u]=%f\n",q,qmin,*shift,cmax,precision+1,i,lp_coeff[i]);
    #endif
    			if(q > qmax)
    				q = qmax;
    			else if(q < qmin)
    				q = qmin;
    			error -= q;
    			qlp_coeff[i] = q;
    		}
    		*shift = 0;
    	}
    
    	return 0;
    }
    
    #if defined(_MSC_VER)
    // silence MSVC warnings about __restrict modifier
    #pragma warning ( disable : 4028 )
    #endif
    
    void FLAC__lpc_compute_residual_from_qlp_coefficients(const FLAC__int32 * flac_restrict data, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict residual)
    #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
    {
    	FLAC__int64 sumo;
    	uint32_t i, j;
    	FLAC__int32 sum;
    	const FLAC__int32 *history;
    
    #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
    	flac_fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
    	for(i=0;i<order;i++)
    		flac_fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
    	flac_fprintf(stderr,"\n");
    #endif
    	FLAC__ASSERT(order > 0);
    
    	for(i = 0; i < data_len; i++) {
    		sumo = 0;
    		sum = 0;
    		history = data;
    		for(j = 0; j < order; j++) {
    			sum += qlp_coeff[j] * (*(--history));
    			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
    			if(sumo > 2147483647ll || sumo < -2147483648ll)
    				flac_fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
    		}
    		*(residual++) = *(data++) - (sum >> lp_quantization);
    	}
    
    	/* Here's a slower but clearer version:
    	for(i = 0; i < data_len; i++) {
    		sum = 0;
    		for(j = 0; j < order; j++)
    			sum += qlp_coeff[j] * data[i-j-1];
    		residual[i] = data[i] - (sum >> lp_quantization);
    	}
    	*/
    }
    #else /* fully unrolled version for normal use */
    {
    	int i;
    	FLAC__int32 sum;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	/*
    	 * We do unique versions up to 12th order since that's the subset limit.
    	 * Also they are roughly ordered to match frequency of occurrence to
    	 * minimize branching.
    	 */
    	if(order <= 12) {
    		if(order > 8) {
    			if(order > 10) {
    				if(order == 12) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[11] * data[i-12];
    						sum += qlp_coeff[10] * data[i-11];
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 11 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[10] * data[i-11];
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 10) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 9 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else if(order > 4) {
    			if(order > 6) {
    				if(order == 8) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 7 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 6) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 5 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else {
    			if(order > 2) {
    				if(order == 4) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 3 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 2) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 1 */
    					for(i = 0; i < (int)data_len; i++)
    						residual[i] = data[i] - ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
    				}
    			}
    		}
    	}
    	else { /* order > 12 */
    		for(i = 0; i < (int)data_len; i++) {
    			sum = 0;
    			switch(order) {
    				case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
    				case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
    				case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
    				case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
    				case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
    				case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
    				case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
    				case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
    				case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
    				case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
    				case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
    				case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
    				case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
    				case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
    				case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
    				case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
    				case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
    				case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
    				case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
    				case 13: sum += qlp_coeff[12] * data[i-13];
    				         sum += qlp_coeff[11] * data[i-12];
    				         sum += qlp_coeff[10] * data[i-11];
    				         sum += qlp_coeff[ 9] * data[i-10];
    				         sum += qlp_coeff[ 8] * data[i- 9];
    				         sum += qlp_coeff[ 7] * data[i- 8];
    				         sum += qlp_coeff[ 6] * data[i- 7];
    				         sum += qlp_coeff[ 5] * data[i- 6];
    				         sum += qlp_coeff[ 4] * data[i- 5];
    				         sum += qlp_coeff[ 3] * data[i- 4];
    				         sum += qlp_coeff[ 2] * data[i- 3];
    				         sum += qlp_coeff[ 1] * data[i- 2];
    				         sum += qlp_coeff[ 0] * data[i- 1];
    			}
    			residual[i] = data[i] - (sum >> lp_quantization);
    		}
    	}
    }
    #endif
    
    void FLAC__lpc_compute_residual_from_qlp_coefficients_wide(const FLAC__int32 * flac_restrict data, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict residual)
    #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
    {
    	uint32_t i, j;
    	FLAC__int64 sum;
    	const FLAC__int32 *history;
    
    #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
    	flac_fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
    	for(i=0;i<order;i++)
    		flac_fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
    	flac_fprintf(stderr,"\n");
    #endif
    	FLAC__ASSERT(order > 0);
    
    	for(i = 0; i < data_len; i++) {
    		sum = 0;
    		history = data;
    		for(j = 0; j < order; j++)
    			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
    		if(FLAC__bitmath_silog2((FLAC__int64)(*data) - (sum >> lp_quantization)) > 32) {
    			flac_fprintf(stderr,"FLAC__lpc_compute_residual_from_qlp_coefficients_wide: OVERFLOW, i=%u, data=%d, sum=%" PRId64 ", residual=%" PRId64 "\n", i, *data, (int64_t)(sum >> lp_quantization), ((FLAC__int64)(*data) - (sum >> lp_quantization)));
    			break;
    		}
    		*(residual++) = *(data++) - (FLAC__int32)(sum >> lp_quantization);
    	}
    }
    #else /* fully unrolled version for normal use */
    {
    	int i;
    	FLAC__int64 sum;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	/*
    	 * We do unique versions up to 12th order since that's the subset limit.
    	 * Also they are roughly ordered to match frequency of occurrence to
    	 * minimize branching.
    	 */
    	if(order <= 12) {
    		if(order > 8) {
    			if(order > 10) {
    				if(order == 12) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
    						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 11 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 10) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 9 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else if(order > 4) {
    			if(order > 6) {
    				if(order == 8) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 7 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 6) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 5 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else {
    			if(order > 2) {
    				if(order == 4) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 3 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 2) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						residual[i] = data[i] - (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 1 */
    					for(i = 0; i < (int)data_len; i++)
    						residual[i] = data[i] - ((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization);
    				}
    			}
    		}
    	}
    	else { /* order > 12 */
    		for(i = 0; i < (int)data_len; i++) {
    			sum = 0;
    			switch(order) {
    				case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; /* Falls through. */
    				case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; /* Falls through. */
    				case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; /* Falls through. */
    				case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; /* Falls through. */
    				case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; /* Falls through. */
    				case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; /* Falls through. */
    				case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; /* Falls through. */
    				case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; /* Falls through. */
    				case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; /* Falls through. */
    				case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; /* Falls through. */
    				case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; /* Falls through. */
    				case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; /* Falls through. */
    				case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; /* Falls through. */
    				case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; /* Falls through. */
    				case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; /* Falls through. */
    				case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; /* Falls through. */
    				case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; /* Falls through. */
    				case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; /* Falls through. */
    				case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; /* Falls through. */
    				case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
    				         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
    				         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    				         sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
    				         sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
    				         sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
    				         sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
    				         sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
    				         sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
    				         sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
    				         sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
    				         sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
    				         sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
    			}
    			residual[i] = data[i] - (sum >> lp_quantization);
    		}
    	}
    }
    #endif
    
    FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual(const FLAC__int32 * flac_restrict data, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict residual)
    {
    	int i;
    	FLAC__int64 sum, residual_to_check;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	for(i = 0; i < (int)data_len; i++) {
    		sum = 0;
    		switch(order) {
    			case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; /* Falls through. */
    			case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; /* Falls through. */
    			case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; /* Falls through. */
    			case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; /* Falls through. */
    			case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; /* Falls through. */
    			case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; /* Falls through. */
    			case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; /* Falls through. */
    			case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; /* Falls through. */
    			case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; /* Falls through. */
    			case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; /* Falls through. */
    			case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; /* Falls through. */
    			case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; /* Falls through. */
    			case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; /* Falls through. */
    			case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; /* Falls through. */
    			case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; /* Falls through. */
    			case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; /* Falls through. */
    			case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; /* Falls through. */
    			case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; /* Falls through. */
    			case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; /* Falls through. */
    			case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13]; /* Falls through. */
    			case 12: sum += qlp_coeff[11] * (FLAC__int64)data[i-12]; /* Falls through. */
    			case 11: sum += qlp_coeff[10] * (FLAC__int64)data[i-11]; /* Falls through. */
    			case 10: sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10]; /* Falls through. */
    			case  9: sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9]; /* Falls through. */
    			case  8: sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8]; /* Falls through. */
    			case  7: sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7]; /* Falls through. */
    			case  6: sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6]; /* Falls through. */
    			case  5: sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5]; /* Falls through. */
    			case  4: sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4]; /* Falls through. */
    			case  3: sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3]; /* Falls through. */
    			case  2: sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2]; /* Falls through. */
    			case  1: sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
    		}
    		residual_to_check = data[i] - (sum >> lp_quantization);
    		 /* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */
    		if(residual_to_check <= INT32_MIN || residual_to_check > INT32_MAX)
    			return false;
    		else
    			residual[i] = residual_to_check;
    	}
    	return true;
    }
    
    FLAC__bool FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit(const FLAC__int64 * flac_restrict data, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict residual)
    {
    	int i;
    	FLAC__int64 sum, residual_to_check;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	for(i = 0; i < (int)data_len; i++) {
    		sum = 0;
    		switch(order) {
    			case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
    			case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
    			case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
    			case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
    			case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
    			case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
    			case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
    			case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
    			case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
    			case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
    			case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
    			case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
    			case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
    			case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
    			case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
    			case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
    			case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
    			case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
    			case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
    			case 13: sum += qlp_coeff[12] * data[i-13]; /* Falls through. */
    			case 12: sum += qlp_coeff[11] * data[i-12]; /* Falls through. */
    			case 11: sum += qlp_coeff[10] * data[i-11]; /* Falls through. */
    			case 10: sum += qlp_coeff[ 9] * data[i-10]; /* Falls through. */
    			case  9: sum += qlp_coeff[ 8] * data[i- 9]; /* Falls through. */
    			case  8: sum += qlp_coeff[ 7] * data[i- 8]; /* Falls through. */
    			case  7: sum += qlp_coeff[ 6] * data[i- 7]; /* Falls through. */
    			case  6: sum += qlp_coeff[ 5] * data[i- 6]; /* Falls through. */
    			case  5: sum += qlp_coeff[ 4] * data[i- 5]; /* Falls through. */
    			case  4: sum += qlp_coeff[ 3] * data[i- 4]; /* Falls through. */
    			case  3: sum += qlp_coeff[ 2] * data[i- 3]; /* Falls through. */
    			case  2: sum += qlp_coeff[ 1] * data[i- 2]; /* Falls through. */
    			case  1: sum += qlp_coeff[ 0] * data[i- 1];
    		}
    		residual_to_check = data[i] - (sum >> lp_quantization);
    		/* residual must not be INT32_MIN because abs(INT32_MIN) is undefined */
    		if(residual_to_check <= INT32_MIN || residual_to_check > INT32_MAX)
    			return false;
    		else
    			residual[i] = residual_to_check;
    	}
    	return true;
    }
    
    #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
    
    FLAC__uint64 FLAC__lpc_max_prediction_value_before_shift(uint32_t subframe_bps, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order)
    {
    	FLAC__uint64 max_abs_sample_value = (FLAC__uint64)(1) << (subframe_bps - 1);
    	FLAC__uint32 abs_sum_of_qlp_coeff = 0;
    	uint32_t i;
    	for(i = 0; i < order; i++)
    		abs_sum_of_qlp_coeff += abs(qlp_coeff[i]);
    	return max_abs_sample_value * abs_sum_of_qlp_coeff;
    }
    
    uint32_t FLAC__lpc_max_prediction_before_shift_bps(uint32_t subframe_bps, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order)
    {
    	/* This used to be subframe_bps + qlp_coeff_precision + FLAC__bitmath_ilog2(order)
    	 * but that treats both the samples as well as the predictor as unknown. The
    	 * predictor is known however, so taking the log2 of the sum of the absolute values
    	 * of all coefficients is a more accurate representation of the predictor */
    	return FLAC__bitmath_silog2(FLAC__lpc_max_prediction_value_before_shift(subframe_bps, qlp_coeff, order));
    }
    
    
    uint32_t FLAC__lpc_max_residual_bps(uint32_t subframe_bps, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization)
    {
    	FLAC__uint64 max_abs_sample_value = (FLAC__uint64)(1) << (subframe_bps - 1);
    	FLAC__uint64 max_prediction_value_after_shift = -1 * ((-1 * (FLAC__int64)FLAC__lpc_max_prediction_value_before_shift(subframe_bps, qlp_coeff, order)) >> lp_quantization);
    	FLAC__uint64 max_residual_value = max_abs_sample_value + max_prediction_value_after_shift;
    	return FLAC__bitmath_silog2(max_residual_value);
    }
    
    #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW)
    /* The attribute below is to silence the undefined sanitizer of oss-fuzz.
     * Because fuzzing feeds bogus predictors and residual samples to the
     * decoder, having overflows in this section is unavoidable. Also,
     * because the calculated values are audio path only, there is no
     * potential for security problems */
    __attribute__((no_sanitize("signed-integer-overflow")))
    #endif
    void FLAC__lpc_restore_signal(const FLAC__int32 * flac_restrict residual, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict data)
    #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
    {
    	FLAC__int64 sumo;
    	uint32_t i, j;
    	FLAC__int32 sum;
    	const FLAC__int32 *r = residual, *history;
    
    #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
    	flac_fprintf(stderr,"FLAC__lpc_restore_signal: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
    	for(i=0;i<order;i++)
    		flac_fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
    	flac_fprintf(stderr,"\n");
    #endif
    	FLAC__ASSERT(order > 0);
    
    	for(i = 0; i < data_len; i++) {
    		sumo = 0;
    		sum = 0;
    		history = data;
    		for(j = 0; j < order; j++) {
    			sum += qlp_coeff[j] * (*(--history));
    			sumo += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*history);
    #ifdef FLAC__OVERFLOW_DETECT
    			if(sumo > 2147483647ll || sumo < -2147483648ll)
    				flac_fprintf(stderr,"FLAC__lpc_restore_signal: OVERFLOW, i=%u, j=%u, c=%d, d=%d, sumo=%" PRId64 "\n",i,j,qlp_coeff[j],*history,sumo);
    #endif
    		}
    		*(data++) = *(r++) + (sum >> lp_quantization);
    	}
    
    	/* Here's a slower but clearer version:
    	for(i = 0; i < data_len; i++) {
    		sum = 0;
    		for(j = 0; j < order; j++)
    			sum += qlp_coeff[j] * data[i-j-1];
    		data[i] = residual[i] + (sum >> lp_quantization);
    	}
    	*/
    }
    #else /* fully unrolled version for normal use */
    {
    	int i;
    	FLAC__int32 sum;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	/*
    	 * We do unique versions up to 12th order since that's the subset limit.
    	 * Also they are roughly ordered to match frequency of occurrence to
    	 * minimize branching.
    	 */
    	if(order <= 12) {
    		if(order > 8) {
    			if(order > 10) {
    				if(order == 12) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[11] * data[i-12];
    						sum += qlp_coeff[10] * data[i-11];
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 11 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[10] * data[i-11];
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 10) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[9] * data[i-10];
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 9 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[8] * data[i-9];
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else if(order > 4) {
    			if(order > 6) {
    				if(order == 8) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[7] * data[i-8];
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 7 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[6] * data[i-7];
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 6) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[5] * data[i-6];
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 5 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[4] * data[i-5];
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    			}
    		}
    		else {
    			if(order > 2) {
    				if(order == 4) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[3] * data[i-4];
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 3 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[2] * data[i-3];
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    			}
    			else {
    				if(order == 2) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[1] * data[i-2];
    						sum += qlp_coeff[0] * data[i-1];
    						data[i] = residual[i] + (sum >> lp_quantization);
    					}
    				}
    				else { /* order == 1 */
    					for(i = 0; i < (int)data_len; i++)
    						data[i] = residual[i] + ((qlp_coeff[0] * data[i-1]) >> lp_quantization);
    				}
    			}
    		}
    	}
    	else { /* order > 12 */
    		for(i = 0; i < (int)data_len; i++) {
    			sum = 0;
    			switch(order) {
    				case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
    				case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
    				case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
    				case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
    				case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
    				case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
    				case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
    				case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
    				case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
    				case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
    				case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
    				case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
    				case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
    				case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
    				case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
    				case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
    				case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
    				case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
    				case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
    				case 13: sum += qlp_coeff[12] * data[i-13];
    				         sum += qlp_coeff[11] * data[i-12];
    				         sum += qlp_coeff[10] * data[i-11];
    				         sum += qlp_coeff[ 9] * data[i-10];
    				         sum += qlp_coeff[ 8] * data[i- 9];
    				         sum += qlp_coeff[ 7] * data[i- 8];
    				         sum += qlp_coeff[ 6] * data[i- 7];
    				         sum += qlp_coeff[ 5] * data[i- 6];
    				         sum += qlp_coeff[ 4] * data[i- 5];
    				         sum += qlp_coeff[ 3] * data[i- 4];
    				         sum += qlp_coeff[ 2] * data[i- 3];
    				         sum += qlp_coeff[ 1] * data[i- 2];
    				         sum += qlp_coeff[ 0] * data[i- 1];
    			}
    			data[i] = residual[i] + (sum >> lp_quantization);
    		}
    	}
    }
    #endif
    
    void FLAC__lpc_restore_signal_wide(const FLAC__int32 * flac_restrict residual, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int32 * flac_restrict data)
    #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
    {
    	uint32_t i, j;
    	FLAC__int64 sum;
    	const FLAC__int32 *r = residual, *history;
    
    #ifdef FLAC__OVERFLOW_DETECT_VERBOSE
    	flac_fprintf(stderr,"FLAC__lpc_restore_signal_wide: data_len=%d, order=%u, lpq=%d",data_len,order,lp_quantization);
    	for(i=0;i<order;i++)
    		flac_fprintf(stderr,", q[%u]=%d",i,qlp_coeff[i]);
    	flac_fprintf(stderr,"\n");
    #endif
    	FLAC__ASSERT(order > 0);
    
    	for(i = 0; i < data_len; i++) {
    		sum = 0;
    		history = data;
    		for(j = 0; j < order; j++)
    			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
    #ifdef FLAC__OVERFLOW_DETECT
    		if(FLAC__bitmath_silog2((FLAC__int64)(*r) + (sum >> lp_quantization)) > 32) {
    			flac_fprintf(stderr,"FLAC__lpc_restore_signal_wide: OVERFLOW, i=%u, residual=%d, sum=%" PRId64 ", data=%" PRId64 "\n", i, *r, (sum >> lp_quantization), ((FLAC__int64)(*r) + (sum >> lp_quantization)));
    			break;
    		}
    #endif
    		*(data++) = (FLAC__int32)(*(r++) + (sum >> lp_quantization));
    	}
    }
    #else /* fully unrolled version for normal use */
    {
    	int i;
    	FLAC__int64 sum;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	/*
    	 * We do unique versions up to 12th order since that's the subset limit.
    	 * Also they are roughly ordered to match frequency of occurrence to
    	 * minimize branching.
    	 */
    	if(order <= 12) {
    		if(order > 8) {
    			if(order > 10) {
    				if(order == 12) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
    						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 11 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    			}
    			else {
    				if(order == 10) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[9] * (FLAC__int64)data[i-10];
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 9 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[8] * (FLAC__int64)data[i-9];
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    			}
    		}
    		else if(order > 4) {
    			if(order > 6) {
    				if(order == 8) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[7] * (FLAC__int64)data[i-8];
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 7 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[6] * (FLAC__int64)data[i-7];
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    			}
    			else {
    				if(order == 6) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[5] * (FLAC__int64)data[i-6];
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 5 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[4] * (FLAC__int64)data[i-5];
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    			}
    		}
    		else {
    			if(order > 2) {
    				if(order == 4) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[3] * (FLAC__int64)data[i-4];
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 3 */
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[2] * (FLAC__int64)data[i-3];
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    			}
    			else {
    				if(order == 2) {
    					for(i = 0; i < (int)data_len; i++) {
    						sum = 0;
    						sum += qlp_coeff[1] * (FLAC__int64)data[i-2];
    						sum += qlp_coeff[0] * (FLAC__int64)data[i-1];
    						data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    					}
    				}
    				else { /* order == 1 */
    					for(i = 0; i < (int)data_len; i++)
    						data[i] = (FLAC__int32)(residual[i] + ((qlp_coeff[0] * (FLAC__int64)data[i-1]) >> lp_quantization));
    				}
    			}
    		}
    	}
    	else { /* order > 12 */
    		for(i = 0; i < (int)data_len; i++) {
    			sum = 0;
    			switch(order) {
    				case 32: sum += qlp_coeff[31] * (FLAC__int64)data[i-32]; /* Falls through. */
    				case 31: sum += qlp_coeff[30] * (FLAC__int64)data[i-31]; /* Falls through. */
    				case 30: sum += qlp_coeff[29] * (FLAC__int64)data[i-30]; /* Falls through. */
    				case 29: sum += qlp_coeff[28] * (FLAC__int64)data[i-29]; /* Falls through. */
    				case 28: sum += qlp_coeff[27] * (FLAC__int64)data[i-28]; /* Falls through. */
    				case 27: sum += qlp_coeff[26] * (FLAC__int64)data[i-27]; /* Falls through. */
    				case 26: sum += qlp_coeff[25] * (FLAC__int64)data[i-26]; /* Falls through. */
    				case 25: sum += qlp_coeff[24] * (FLAC__int64)data[i-25]; /* Falls through. */
    				case 24: sum += qlp_coeff[23] * (FLAC__int64)data[i-24]; /* Falls through. */
    				case 23: sum += qlp_coeff[22] * (FLAC__int64)data[i-23]; /* Falls through. */
    				case 22: sum += qlp_coeff[21] * (FLAC__int64)data[i-22]; /* Falls through. */
    				case 21: sum += qlp_coeff[20] * (FLAC__int64)data[i-21]; /* Falls through. */
    				case 20: sum += qlp_coeff[19] * (FLAC__int64)data[i-20]; /* Falls through. */
    				case 19: sum += qlp_coeff[18] * (FLAC__int64)data[i-19]; /* Falls through. */
    				case 18: sum += qlp_coeff[17] * (FLAC__int64)data[i-18]; /* Falls through. */
    				case 17: sum += qlp_coeff[16] * (FLAC__int64)data[i-17]; /* Falls through. */
    				case 16: sum += qlp_coeff[15] * (FLAC__int64)data[i-16]; /* Falls through. */
    				case 15: sum += qlp_coeff[14] * (FLAC__int64)data[i-15]; /* Falls through. */
    				case 14: sum += qlp_coeff[13] * (FLAC__int64)data[i-14]; /* Falls through. */
    				case 13: sum += qlp_coeff[12] * (FLAC__int64)data[i-13];
    				         sum += qlp_coeff[11] * (FLAC__int64)data[i-12];
    				         sum += qlp_coeff[10] * (FLAC__int64)data[i-11];
    				         sum += qlp_coeff[ 9] * (FLAC__int64)data[i-10];
    				         sum += qlp_coeff[ 8] * (FLAC__int64)data[i- 9];
    				         sum += qlp_coeff[ 7] * (FLAC__int64)data[i- 8];
    				         sum += qlp_coeff[ 6] * (FLAC__int64)data[i- 7];
    				         sum += qlp_coeff[ 5] * (FLAC__int64)data[i- 6];
    				         sum += qlp_coeff[ 4] * (FLAC__int64)data[i- 5];
    				         sum += qlp_coeff[ 3] * (FLAC__int64)data[i- 4];
    				         sum += qlp_coeff[ 2] * (FLAC__int64)data[i- 3];
    				         sum += qlp_coeff[ 1] * (FLAC__int64)data[i- 2];
    				         sum += qlp_coeff[ 0] * (FLAC__int64)data[i- 1];
    			}
    			data[i] = (FLAC__int32) (residual[i] + (sum >> lp_quantization));
    		}
    	}
    }
    #endif
    
    #if defined(FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION) && !defined(FUZZING_BUILD_MODE_FLAC_SANITIZE_SIGNED_INTEGER_OVERFLOW)
    /* The attribute below is to silence the undefined sanitizer of oss-fuzz.
     * Because fuzzing feeds bogus predictors and residual samples to the
     * decoder, having overflows in this section is unavoidable. Also,
     * because the calculated values are audio path only, there is no
     * potential for security problems */
    __attribute__((no_sanitize("signed-integer-overflow")))
    #endif
    void FLAC__lpc_restore_signal_wide_33bit(const FLAC__int32 * flac_restrict residual, uint32_t data_len, const FLAC__int32 * flac_restrict qlp_coeff, uint32_t order, int lp_quantization, FLAC__int64 * flac_restrict data)
    #if defined(FLAC__OVERFLOW_DETECT) || !defined(FLAC__LPC_UNROLLED_FILTER_LOOPS)
    {
    	uint32_t i, j;
    	FLAC__int64 sum;
    	const FLAC__int32 *r = residual;
    	const FLAC__int64 *history;
    
    	FLAC__ASSERT(order > 0);
    
    	for(i = 0; i < data_len; i++) {
    		sum = 0;
    		history = data;
    		for(j = 0; j < order; j++)
    			sum += (FLAC__int64)qlp_coeff[j] * (FLAC__int64)(*(--history));
    #ifdef FLAC__OVERFLOW_DETECT
    		if(FLAC__bitmath_silog2((FLAC__int64)(*r) + (sum >> lp_quantization)) > 33) {
    			flac_fprintf(stderr,"FLAC__lpc_restore_signal_33bit: OVERFLOW, i=%u, residual=%d, sum=%" PRId64 ", data=%" PRId64 "\n", i, *r, (sum >> lp_quantization), ((FLAC__int64)(*r) + (sum >> lp_quantization)));
    			break;
    		}
    #endif
    		*(data++) = (FLAC__int64)(*(r++)) + (sum >> lp_quantization);
    	}
    }
    #else /* unrolled version for normal use */
    {
    	int i;
    	FLAC__int64 sum;
    
    	FLAC__ASSERT(order > 0);
    	FLAC__ASSERT(order <= 32);
    
    	for(i = 0; i < (int)data_len; i++) {
    		sum = 0;
    		switch(order) {
    			case 32: sum += qlp_coeff[31] * data[i-32]; /* Falls through. */
    			case 31: sum += qlp_coeff[30] * data[i-31]; /* Falls through. */
    			case 30: sum += qlp_coeff[29] * data[i-30]; /* Falls through. */
    			case 29: sum += qlp_coeff[28] * data[i-29]; /* Falls through. */
    			case 28: sum += qlp_coeff[27] * data[i-28]; /* Falls through. */
    			case 27: sum += qlp_coeff[26] * data[i-27]; /* Falls through. */
    			case 26: sum += qlp_coeff[25] * data[i-26]; /* Falls through. */
    			case 25: sum += qlp_coeff[24] * data[i-25]; /* Falls through. */
    			case 24: sum += qlp_coeff[23] * data[i-24]; /* Falls through. */
    			case 23: sum += qlp_coeff[22] * data[i-23]; /* Falls through. */
    			case 22: sum += qlp_coeff[21] * data[i-22]; /* Falls through. */
    			case 21: sum += qlp_coeff[20] * data[i-21]; /* Falls through. */
    			case 20: sum += qlp_coeff[19] * data[i-20]; /* Falls through. */
    			case 19: sum += qlp_coeff[18] * data[i-19]; /* Falls through. */
    			case 18: sum += qlp_coeff[17] * data[i-18]; /* Falls through. */
    			case 17: sum += qlp_coeff[16] * data[i-17]; /* Falls through. */
    			case 16: sum += qlp_coeff[15] * data[i-16]; /* Falls through. */
    			case 15: sum += qlp_coeff[14] * data[i-15]; /* Falls through. */
    			case 14: sum += qlp_coeff[13] * data[i-14]; /* Falls through. */
    			case 13: sum += qlp_coeff[12] * data[i-13]; /* Falls through. */
    			case 12: sum += qlp_coeff[11] * data[i-12]; /* Falls through. */
    			case 11: sum += qlp_coeff[10] * data[i-11]; /* Falls through. */
    			case 10: sum += qlp_coeff[ 9] * data[i-10]; /* Falls through. */
    			case  9: sum += qlp_coeff[ 8] * data[i- 9]; /* Falls through. */
    			case  8: sum += qlp_coeff[ 7] * data[i- 8]; /* Falls through. */
    			case  7: sum += qlp_coeff[ 6] * data[i- 7]; /* Falls through. */
    			case  6: sum += qlp_coeff[ 5] * data[i- 6]; /* Falls through. */
    			case  5: sum += qlp_coeff[ 4] * data[i- 5]; /* Falls through. */
    			case  4: sum += qlp_coeff[ 3] * data[i- 4]; /* Falls through. */
    			case  3: sum += qlp_coeff[ 2] * data[i- 3]; /* Falls through. */
    			case  2: sum += qlp_coeff[ 1] * data[i- 2]; /* Falls through. */
    			case  1: sum += qlp_coeff[ 0] * data[i- 1];
    		}
    		data[i] = residual[i] + (sum >> lp_quantization);
    	}
    }
    #endif
    
    #if defined(_MSC_VER)
    #pragma warning ( default : 4028 )
    #endif
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    
    double FLAC__lpc_compute_expected_bits_per_residual_sample(double lpc_error, uint32_t total_samples)
    {
    	double error_scale;
    
    	FLAC__ASSERT(total_samples > 0);
    
    	error_scale = 0.5 / (double)total_samples;
    
    	return FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error, error_scale);
    }
    
    double FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(double lpc_error, double error_scale)
    {
    	if(lpc_error > 0.0) {
    		double bps = (double)0.5 * log(error_scale * lpc_error) / M_LN2;
    		if(bps >= 0.0)
    			return bps;
    		else
    			return 0.0;
    	}
    	else if(lpc_error < 0.0) { /* error should not be negative but can happen due to inadequate floating-point resolution */
    		return 1e32;
    	}
    	else {
    		return 0.0;
    	}
    }
    
    uint32_t FLAC__lpc_compute_best_order(const double lpc_error[], uint32_t max_order, uint32_t total_samples, uint32_t overhead_bits_per_order)
    {
    	uint32_t order, indx, best_index; /* 'index' the index into lpc_error; index==order-1 since lpc_error[0] is for order==1, lpc_error[1] is for order==2, etc */
    	double bits, best_bits, error_scale;
    
    	FLAC__ASSERT(max_order > 0);
    	FLAC__ASSERT(total_samples > 0);
    
    	error_scale = 0.5 / (double)total_samples;
    
    	best_index = 0;
    	best_bits = (uint32_t)(-1);
    
    	for(indx = 0, order = 1; indx < max_order; indx++, order++) {
    		bits = FLAC__lpc_compute_expected_bits_per_residual_sample_with_error_scale(lpc_error[indx], error_scale) * (double)(total_samples - order) + (double)(order * overhead_bits_per_order);
    		if(bits < best_bits) {
    			best_index = indx;
    			best_bits = bits;
    		}
    	}
    
    	return best_index+1; /* +1 since indx of lpc_error[] is order-1 */
    }
    
    #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */