• stream_encoder.c
  • /* libFLAC - Free Lossless Audio Codec library
     * Copyright (C) 2000-2009  Josh Coalson
     * Copyright (C) 2011-2025  Xiph.Org Foundation
     *
     * Redistribution and use in source and binary forms, with or without
     * modification, are permitted provided that the following conditions
     * are met:
     *
     * - Redistributions of source code must retain the above copyright
     * notice, this list of conditions and the following disclaimer.
     *
     * - Redistributions in binary form must reproduce the above copyright
     * notice, this list of conditions and the following disclaimer in the
     * documentation and/or other materials provided with the distribution.
     *
     * - Neither the name of the Xiph.org Foundation nor the names of its
     * contributors may be used to endorse or promote products derived from
     * this software without specific prior written permission.
     *
     * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
     * ``AS IS'' AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
     * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
     * A PARTICULAR PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE FOUNDATION OR
     * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
     * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
     * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
     * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
     * LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
     * NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
     * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
     */
    
    #ifdef HAVE_CONFIG_H
    #  include <config.h>
    #endif
    
    #include <limits.h>
    #include <stdio.h>
    #include <stdlib.h> /* for malloc() */
    #include <string.h> /* for memcpy() */
    #include <sys/types.h> /* for off_t */
    #ifdef _WIN32
    #include <windows.h> /* for GetFileType() */
    #include <io.h> /* for _get_osfhandle() */
    #endif
    #ifdef HAVE_PTHREAD
    #include <pthread.h>
    #endif
    #include "share/compat.h"
    #include "FLAC/assert.h"
    #include "FLAC/stream_decoder.h"
    #include "protected/stream_encoder.h"
    #include "private/bitwriter.h"
    #include "private/bitmath.h"
    #include "private/crc.h"
    #include "private/cpu.h"
    #include "private/fixed.h"
    #include "private/format.h"
    #include "private/lpc.h"
    #include "private/md5.h"
    #include "private/memory.h"
    #include "private/macros.h"
    #if FLAC__HAS_OGG
    #include "private/ogg_helper.h"
    #include "private/ogg_mapping.h"
    #endif
    #include "private/stream_encoder.h"
    #include "private/stream_encoder_framing.h"
    #include "private/window.h"
    #include "share/alloc.h"
    #include "share/private.h"
    
    
    /* Exact Rice codeword length calculation is off by default.  The simple
     * (and fast) estimation (of how many bits a residual value will be
     * encoded with) in this encoder is very good, almost always yielding
     * compression within 0.1% of exact calculation.
     */
    #undef EXACT_RICE_BITS_CALCULATION
    /* Rice parameter searching is off by default.  The simple (and fast)
     * parameter estimation in this encoder is very good, almost always
     * yielding compression within 0.1% of the optimal parameters.
     */
    #undef ENABLE_RICE_PARAMETER_SEARCH
    
    #ifdef local_abs64
    #undef local_abs64
    #endif
    #define local_abs64(x) ((uint64_t)((x)<0? -(x) : (x)))
    
    
    typedef struct {
    	FLAC__int32 *data[FLAC__MAX_CHANNELS];
    	uint32_t size; /* of each data[] in samples */
    	uint32_t tail;
    } verify_input_fifo;
    
    typedef struct {
    	const FLAC__byte *data;
    	uint32_t capacity;
    	uint32_t bytes;
    } verify_output;
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    typedef struct {
    	uint32_t a, b, c;
    	FLAC__ApodizationSpecification * current_apodization;
    	double autoc_root[FLAC__MAX_LPC_ORDER+1];
    	double autoc[FLAC__MAX_LPC_ORDER+1];
    } apply_apodization_state_struct;
    #endif
    
    typedef enum {
    	ENCODER_IN_MAGIC = 0,
    	ENCODER_IN_METADATA = 1,
    	ENCODER_IN_AUDIO = 2
    } EncoderStateHint;
    
    static const  struct CompressionLevels {
    	FLAC__bool do_mid_side_stereo;
    	FLAC__bool loose_mid_side_stereo;
    	uint32_t max_lpc_order;
    	uint32_t qlp_coeff_precision;
    	FLAC__bool do_qlp_coeff_prec_search;
    	FLAC__bool do_escape_coding;
    	FLAC__bool do_exhaustive_model_search;
    	uint32_t min_residual_partition_order;
    	uint32_t max_residual_partition_order;
    	uint32_t rice_parameter_search_dist;
    	const char *apodization;
    } compression_levels_[] = {
    	{ false, false,  0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" },
    	{ true , true ,  0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" },
    	{ true , false,  0, 0, false, false, false, 0, 3, 0, "tukey(5e-1)" },
    	{ false, false,  6, 0, false, false, false, 0, 4, 0, "tukey(5e-1)" },
    	{ true , true ,  8, 0, false, false, false, 0, 4, 0, "tukey(5e-1)" },
    	{ true , false,  8, 0, false, false, false, 0, 5, 0, "tukey(5e-1)" },
    	{ true , false,  8, 0, false, false, false, 0, 6, 0, "subdivide_tukey(2)" },
    	{ true , false, 12, 0, false, false, false, 0, 6, 0, "subdivide_tukey(2)" },
    	{ true , false, 12, 0, false, false, false, 0, 6, 0, "subdivide_tukey(3)" }
    	/* here we use locale-independent 5e-1 instead of 0.5 or 0,5 */
    };
    
    /***********************************************************************
     *
     * Thread-private data
     *
     ***********************************************************************/
    
    
    typedef struct FLAC__StreamEncoderThreadTask {
    	FLAC__int32 *integer_signal[FLAC__MAX_CHANNELS];  /* the integer version of the input signal */
    	FLAC__int32 *integer_signal_mid_side[2];          /* the integer version of the mid-side input signal (stereo only) */
    	FLAC__int64 *integer_signal_33bit_side;           /* 33-bit side for 32-bit stereo decorrelation */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	FLAC__real *windowed_signal;                      /* the integer_signal[] * current window[] */
    #endif
    	uint32_t subframe_bps[FLAC__MAX_CHANNELS];        /* the effective bits per sample of the input signal (stream bps - wasted bits) */
    	uint32_t subframe_bps_mid_side[2];                /* the effective bits per sample of the mid-side input signal (stream bps - wasted bits + 0/1) */
    	FLAC__int32 *residual_workspace[FLAC__MAX_CHANNELS][2]; /* each channel has a candidate and best workspace where the subframe residual signals will be stored */
    	FLAC__int32 *residual_workspace_mid_side[2][2];
    	FLAC__Subframe subframe_workspace[FLAC__MAX_CHANNELS][2];
    	FLAC__Subframe subframe_workspace_mid_side[2][2];
    	FLAC__Subframe *subframe_workspace_ptr[FLAC__MAX_CHANNELS][2];
    	FLAC__Subframe *subframe_workspace_ptr_mid_side[2][2];
    	FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace[FLAC__MAX_CHANNELS][2];
    	FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_workspace_mid_side[FLAC__MAX_CHANNELS][2];
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr[FLAC__MAX_CHANNELS][2];
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents_workspace_ptr_mid_side[FLAC__MAX_CHANNELS][2];
    	uint32_t best_subframe[FLAC__MAX_CHANNELS];       /* index (0 or 1) into 2nd dimension of the above workspaces */
    	uint32_t best_subframe_mid_side[2];
    	uint32_t best_subframe_bits[FLAC__MAX_CHANNELS];  /* size in bits of the best subframe for each channel */
    	uint32_t best_subframe_bits_mid_side[2];
    	FLAC__uint64 *abs_residual_partition_sums;        /* workspace where the sum of abs(candidate residual) for each partition is stored */
    	uint32_t *raw_bits_per_partition;                 /* workspace where the sum of silog2(candidate residual) for each partition is stored */
    	FLAC__BitWriter *frame;                           /* the current frame being worked on */
    	uint32_t current_frame_number;
    	/* unaligned (original) pointers to allocated data */
    	FLAC__int32 *integer_signal_unaligned[FLAC__MAX_CHANNELS];
    	FLAC__int32 *integer_signal_mid_side_unaligned[2];
    	FLAC__int64 *integer_signal_33bit_side_unaligned;
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	FLAC__real *windowed_signal_unaligned;
    #endif
    	FLAC__int32 *residual_workspace_unaligned[FLAC__MAX_CHANNELS][2];
    	FLAC__int32 *residual_workspace_mid_side_unaligned[2][2];
    	FLAC__uint64 *abs_residual_partition_sums_unaligned;
    	uint32_t *raw_bits_per_partition_unaligned;
    	/*
    	 * These fields have been moved here from private function local
    	 * declarations merely to save stack space during encoding.
    	 */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	FLAC__real lp_coeff[FLAC__MAX_LPC_ORDER][FLAC__MAX_LPC_ORDER]; /* from process_subframe_() */
    #endif
    	FLAC__EntropyCodingMethod_PartitionedRiceContents partitioned_rice_contents_extra[2]; /* from find_best_partition_order_() */
    	FLAC__bool disable_constant_subframes;
    #ifdef HAVE_PTHREAD
    	pthread_mutex_t mutex_this_task;      /* To lock whole threadtask */
    	pthread_cond_t cond_task_done;
    	FLAC__bool task_done;
    	FLAC__bool returnvalue;
    #endif
    } FLAC__StreamEncoderThreadTask;
    
    /***********************************************************************
     *
     * Private class method prototypes
     *
     ***********************************************************************/
    
    static void set_defaults_(FLAC__StreamEncoder *encoder);
    static void free_(FLAC__StreamEncoder *encoder);
    static FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, uint32_t new_blocksize);
    static FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderThreadTask *threadtask, uint32_t samples, FLAC__bool is_last_block);
    static FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, FLAC__bool is_last_block);
    static void update_metadata_(const FLAC__StreamEncoder *encoder);
    #if FLAC__HAS_OGG
    static void update_ogg_metadata_(FLAC__StreamEncoder *encoder);
    #endif
    static FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_block);
    void * process_frame_thread_(void * encoder);
    FLAC__bool process_frame_thread_inner_(FLAC__StreamEncoder * encoder, FLAC__StreamEncoderThreadTask *threadtask);
    static FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderThreadTask *threadtask);
    
    static FLAC__bool process_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	const FLAC__FrameHeader *frame_header,
    	uint32_t subframe_bps,
    	const void *integer_signal,
    	FLAC__Subframe *subframe[2],
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2],
    	FLAC__int32 *residual[2],
    	uint32_t *best_subframe,
    	uint32_t *best_bits
    );
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    static FLAC__bool apply_apodization_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	apply_apodization_state_struct *apply_apodization_state,
    	uint32_t blocksize,
    	double *lpc_error,
    	uint32_t *max_lpc_order_this_apodization,
    	uint32_t subframe_bps,
    	const void *integer_signal,
    	uint32_t *guess_lpc_order
    );
    #endif
    
    static FLAC__bool add_subframe_(
    	FLAC__StreamEncoder *encoder,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	const FLAC__Subframe *subframe,
    	FLAC__BitWriter *frame
    );
    
    static uint32_t evaluate_constant_subframe_(
    	FLAC__StreamEncoder *encoder,
    	const FLAC__int64 signal,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	FLAC__Subframe *subframe
    );
    
    static uint32_t evaluate_fixed_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const void *signal,
    	FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	uint32_t order,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__Subframe *subframe,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
    );
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    static uint32_t evaluate_lpc_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const void *signal,
    	FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	const FLAC__real lp_coeff[],
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	uint32_t order,
    	uint32_t qlp_coeff_precision,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__Subframe *subframe,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
    );
    #endif
    
    static uint32_t evaluate_verbatim_subframe_(
    	FLAC__StreamEncoder *encoder,
    	const void *signal,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	FLAC__Subframe *subframe
    );
    
    static uint32_t find_best_partition_order_(
    	struct FLAC__StreamEncoderPrivate *private_,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	uint32_t bps,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__EntropyCodingMethod *best_ecm
    );
    
    static void precompute_partition_info_sums_(
    	const FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	uint32_t bps
    );
    
    static void precompute_partition_info_escapes_(
    	const FLAC__int32 residual[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order
    );
    
    static FLAC__bool set_partitioned_rice_(
    #ifdef EXACT_RICE_BITS_CALCULATION
    	const FLAC__int32 residual[],
    #endif
    	const FLAC__uint64 abs_residual_partition_sums[],
    	const uint32_t raw_bits_per_partition[],
    	const uint32_t residual_samples,
    	const uint32_t predictor_order,
    	const uint32_t rice_parameter_limit,
    	const uint32_t rice_parameter_search_dist,
    	const uint32_t partition_order,
    	const FLAC__bool search_for_escapes,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
    	uint32_t *bits
    );
    
    static uint32_t get_wasted_bits_(FLAC__int32 signal[], uint32_t samples);
    static uint32_t get_wasted_bits_wide_(FLAC__int64 signal_wide[], FLAC__int32 signal[], uint32_t samples);
    
    /* verify-related routines: */
    static void append_to_verify_fifo_(
    	verify_input_fifo *fifo,
    	const FLAC__int32 * const input[],
    	uint32_t input_offset,
    	uint32_t channels,
    	uint32_t wide_samples
    );
    
    static void append_to_verify_fifo_interleaved_(
    	verify_input_fifo *fifo,
    	const FLAC__int32 input[],
    	uint32_t input_offset,
    	uint32_t channels,
    	uint32_t wide_samples
    );
    
    static FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data);
    static FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data);
    static void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data);
    static void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data);
    
    static FLAC__StreamEncoderReadStatus file_read_callback_(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data);
    static FLAC__StreamEncoderSeekStatus file_seek_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data);
    static FLAC__StreamEncoderTellStatus file_tell_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data);
    static FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, uint32_t current_frame, void *client_data);
    static FILE *get_binary_stdout_(void);
    
    
    /***********************************************************************
     *
     * Private class data
     *
     ***********************************************************************/
    
    typedef struct FLAC__StreamEncoderPrivate {
    	FLAC__StreamEncoderThreadTask * threadtask[FLAC__STREAM_ENCODER_MAX_THREADTASKS];
    #ifdef HAVE_PTHREAD
    	pthread_t thread[FLAC__STREAM_ENCODER_MAX_THREADS];
    #endif
    	uint32_t input_capacity;                          /* current size (in samples) of the signal and residual buffers */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	FLAC__real *window[FLAC__MAX_APODIZATION_FUNCTIONS]; /* the pre-computed floating-point window for each apodization function */
    	FLAC__real *window_unaligned[FLAC__MAX_APODIZATION_FUNCTIONS];
    #endif
    	FLAC__StreamMetadata streaminfo;                  /* scratchpad for STREAMINFO as it is built */
    	FLAC__StreamMetadata_SeekTable *seek_table;       /* pointer into encoder->protected_->metadata_ where the seek table is */
    	uint32_t current_sample_number;
    	uint32_t current_frame_number;
    	FLAC__MD5Context md5context;
    	FLAC__CPUInfo cpuinfo;
    	void (*local_precompute_partition_info_sums)(const FLAC__int32 residual[], FLAC__uint64 abs_residual_partition_sums[], uint32_t residual_samples, uint32_t predictor_order, uint32_t min_partition_order, uint32_t max_partition_order, uint32_t bps);
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	uint32_t (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    	uint32_t (*local_fixed_compute_best_predictor_wide)(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    	uint32_t (*local_fixed_compute_best_predictor_limit_residual)(const FLAC__int32 data[], uint32_t data_len, float residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    #else
    	uint32_t (*local_fixed_compute_best_predictor)(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    	uint32_t (*local_fixed_compute_best_predictor_wide)(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    	uint32_t (*local_fixed_compute_best_predictor_limit_residual)(const FLAC__int32 data[], uint32_t data_len, FLAC__fixedpoint residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1]);
    #endif
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	void (*local_lpc_compute_autocorrelation)(const FLAC__real data[], uint32_t data_len, uint32_t lag, double autoc[]);
    	void (*local_lpc_compute_residual_from_qlp_coefficients)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    	void (*local_lpc_compute_residual_from_qlp_coefficients_64bit)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    	void (*local_lpc_compute_residual_from_qlp_coefficients_16bit)(const FLAC__int32 *data, uint32_t data_len, const FLAC__int32 qlp_coeff[], uint32_t order, int lp_quantization, FLAC__int32 residual[]);
    #endif
    	FLAC__bool disable_mmx;
    	FLAC__bool disable_sse2;
    	FLAC__bool disable_ssse3;
    	FLAC__bool disable_sse41;
    	FLAC__bool disable_sse42;
    	FLAC__bool disable_avx2;
    	FLAC__bool disable_fma;
    	FLAC__bool disable_constant_subframes;
    	FLAC__bool disable_fixed_subframes;
    	FLAC__bool disable_verbatim_subframes;
    	FLAC__bool is_ogg;
    	FLAC__StreamEncoderReadCallback read_callback; /* currently only needed for Ogg FLAC */
    	FLAC__StreamEncoderSeekCallback seek_callback;
    	FLAC__StreamEncoderTellCallback tell_callback;
    	FLAC__StreamEncoderWriteCallback write_callback;
    	FLAC__StreamEncoderMetadataCallback metadata_callback;
    	FLAC__StreamEncoderProgressCallback progress_callback;
    	void *client_data;
    	uint32_t first_seekpoint_to_check;
    	FILE *file;                            /* only used when encoding to a file */
    	FLAC__uint64 bytes_written;
    	FLAC__uint64 samples_written;
    	uint32_t frames_written;
    	uint32_t total_frames_estimate;
    	/*
    	 * The data for the verify section
    	 */
    	struct {
    		FLAC__StreamDecoder *decoder;
    		EncoderStateHint state_hint;
    		FLAC__bool needs_magic_hack;
    		verify_input_fifo input_fifo;
    		verify_output output;
    		struct {
    			FLAC__uint64 absolute_sample;
    			uint32_t frame_number;
    			uint32_t channel;
    			uint32_t sample;
    			FLAC__int32 expected;
    			FLAC__int32 got;
    		} error_stats;
    	} verify;
    	FLAC__bool is_being_deleted; /* if true, call to ..._finish() from ..._delete() will not call the callbacks */
    	uint32_t num_threadtasks;
    #ifdef HAVE_PTHREAD
    	uint32_t num_created_threads;
    	uint32_t next_thread; /* This is the next thread that needs start, or needs to finish and be restarted */
    	uint32_t num_started_threadtasks;
    	uint32_t num_available_threadtasks; /* Number of threadtasks that are available to work on */
    	uint32_t num_running_threads;
    	uint32_t next_threadtask; /* Next threadtask that is available to work on */
    	pthread_mutex_t mutex_md5_fifo;
    	pthread_mutex_t mutex_work_queue; /* To lock work related variables in this struct */
    	pthread_cond_t cond_md5_emptied; /* To signal to main thread that MD5 queue has been emptied */
    	pthread_cond_t cond_work_available; /* To signal to threads that work is available */
    	pthread_cond_t cond_wake_up_thread; /* To signal that one sleeping thread can wake up */
    	FLAC__bool md5_active;
    	FLAC__bool finish_work_threads;
    	int32_t overcommitted_indicator;
    	verify_input_fifo md5_fifo;
    #endif
    } FLAC__StreamEncoderPrivate;
    
    /***********************************************************************
     *
     * Public static class data
     *
     ***********************************************************************/
    
    FLAC_API const char * const FLAC__StreamEncoderStateString[] = {
    	"FLAC__STREAM_ENCODER_OK",
    	"FLAC__STREAM_ENCODER_UNINITIALIZED",
    	"FLAC__STREAM_ENCODER_OGG_ERROR",
    	"FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR",
    	"FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA",
    	"FLAC__STREAM_ENCODER_CLIENT_ERROR",
    	"FLAC__STREAM_ENCODER_IO_ERROR",
    	"FLAC__STREAM_ENCODER_FRAMING_ERROR",
    	"FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR"
    };
    
    FLAC_API const char * const FLAC__StreamEncoderInitStatusString[] = {
    	"FLAC__STREAM_ENCODER_INIT_STATUS_OK",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA",
    	"FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED"
    };
    
    FLAC_API const char * const FLAC__StreamEncoderReadStatusString[] = {
    	"FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE",
    	"FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM",
    	"FLAC__STREAM_ENCODER_READ_STATUS_ABORT",
    	"FLAC__STREAM_ENCODER_READ_STATUS_UNSUPPORTED"
    };
    
    FLAC_API const char * const FLAC__StreamEncoderWriteStatusString[] = {
    	"FLAC__STREAM_ENCODER_WRITE_STATUS_OK",
    	"FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR"
    };
    
    FLAC_API const char * const FLAC__StreamEncoderSeekStatusString[] = {
    	"FLAC__STREAM_ENCODER_SEEK_STATUS_OK",
    	"FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR",
    	"FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED"
    };
    
    FLAC_API const char * const FLAC__StreamEncoderTellStatusString[] = {
    	"FLAC__STREAM_ENCODER_TELL_STATUS_OK",
    	"FLAC__STREAM_ENCODER_TELL_STATUS_ERROR",
    	"FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED"
    };
    
    /* Number of samples that will be overread to watch for end of stream.  By
     * 'overread', we mean that the FLAC__stream_encoder_process*() calls will
     * always try to read blocksize+1 samples before encoding a block, so that
     * even if the stream has a total sample count that is an integral multiple
     * of the blocksize, we will still notice when we are encoding the last
     * block.  This is needed, for example, to correctly set the end-of-stream
     * marker in Ogg FLAC.
     *
     * WATCHOUT: some parts of the code assert that OVERREAD_ == 1 and there's
     * not really any reason to change it.
     */
    static const uint32_t OVERREAD_ = 1;
    
    /***********************************************************************
     *
     * Class constructor/destructor
     *
     */
    FLAC_API FLAC__StreamEncoder *FLAC__stream_encoder_new(void)
    {
    	FLAC__StreamEncoder *encoder;
    	uint32_t i;
    
    	FLAC__ASSERT(sizeof(int) >= 4); /* we want to die right away if this is not true */
    
    	encoder = safe_calloc_(1, sizeof(FLAC__StreamEncoder));
    	if(encoder == 0) {
    		return 0;
    	}
    
    	encoder->protected_ = safe_calloc_(1, sizeof(FLAC__StreamEncoderProtected));
    	if(encoder->protected_ == 0) {
    		free(encoder);
    		return 0;
    	}
    
    	encoder->private_ = safe_calloc_(1, sizeof(FLAC__StreamEncoderPrivate));
    	if(encoder->private_ == 0) {
    		free(encoder->protected_);
    		free(encoder);
    		return 0;
    	}
    
    	encoder->private_->threadtask[0] = safe_calloc_(1, sizeof(FLAC__StreamEncoderThreadTask));
    	if(encoder->private_->threadtask[0] == 0) {
    		free(encoder->private_);
    		free(encoder->protected_);
    		free(encoder);
    		return 0;
    	}
    
    	encoder->private_->threadtask[0]->frame = FLAC__bitwriter_new();
    	if(encoder->private_->threadtask[0]->frame == 0) {
    		free(encoder->private_->threadtask[0]);
    		free(encoder->private_);
    		free(encoder->protected_);
    		free(encoder);
    		return 0;
    	}
    
    	encoder->private_->file = 0;
    
    	encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED;
    
    	set_defaults_(encoder);
    
    	encoder->private_->is_being_deleted = false;
    
    	for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    		encoder->private_->threadtask[0]->subframe_workspace_ptr[i][0] = &encoder->private_->threadtask[0]->subframe_workspace[i][0];
    		encoder->private_->threadtask[0]->subframe_workspace_ptr[i][1] = &encoder->private_->threadtask[0]->subframe_workspace[i][1];
    	}
    	for(i = 0; i < 2; i++) {
    		encoder->private_->threadtask[0]->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->threadtask[0]->subframe_workspace_mid_side[i][0];
    		encoder->private_->threadtask[0]->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->threadtask[0]->subframe_workspace_mid_side[i][1];
    	}
    	for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    		encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][0];
    		encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][1];
    	}
    	for(i = 0; i < 2; i++) {
    		encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][0];
    		encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][1];
    	}
    
    	for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][0]);
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][1]);
    	}
    	for(i = 0; i < 2; i++) {
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][0]);
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][1]);
    	}
    	for(i = 0; i < 2; i++)
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[0]->partitioned_rice_contents_extra[i]);
    
    	return encoder;
    }
    
    FLAC_API void FLAC__stream_encoder_delete(FLAC__StreamEncoder *encoder)
    {
    	uint32_t i;
    
    	if (encoder == NULL)
    		return ;
    
    	FLAC__ASSERT(0 != encoder->protected_);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->private_->threadtask[0]);
    	FLAC__ASSERT(0 != encoder->private_->threadtask[0]->frame);
    
    	encoder->private_->is_being_deleted = true;
    
    	(void)FLAC__stream_encoder_finish(encoder);
    
    	if(0 != encoder->private_->verify.decoder)
    		FLAC__stream_decoder_delete(encoder->private_->verify.decoder);
    
    	for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][0]);
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace[i][1]);
    	}
    	for(i = 0; i < 2; i++) {
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][0]);
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[0]->partitioned_rice_contents_workspace_mid_side[i][1]);
    	}
    	for(i = 0; i < 2; i++)
    		FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[0]->partitioned_rice_contents_extra[i]);
    
    	FLAC__bitwriter_delete(encoder->private_->threadtask[0]->frame);
    	free(encoder->private_->threadtask[0]);
    	free(encoder->private_);
    	free(encoder->protected_);
    	free(encoder);
    }
    
    /***********************************************************************
     *
     * Public class methods
     *
     ***********************************************************************/
    
    static FLAC__StreamEncoderInitStatus init_stream_internal_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderReadCallback read_callback,
    	FLAC__StreamEncoderWriteCallback write_callback,
    	FLAC__StreamEncoderSeekCallback seek_callback,
    	FLAC__StreamEncoderTellCallback tell_callback,
    	FLAC__StreamEncoderMetadataCallback metadata_callback,
    	void *client_data,
    	FLAC__bool is_ogg
    )
    {
    	uint32_t i, t;
    	FLAC__bool metadata_has_seektable, metadata_has_vorbis_comment, metadata_picture_has_type1, metadata_picture_has_type2;
    
    	FLAC__ASSERT(0 != encoder);
    
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED;
    
    	if(FLAC__HAS_OGG == 0 && is_ogg)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_UNSUPPORTED_CONTAINER;
    
    	if(0 == write_callback || (seek_callback && 0 == tell_callback))
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_CALLBACKS;
    
    	if(encoder->protected_->channels == 0 || encoder->protected_->channels > FLAC__MAX_CHANNELS)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_NUMBER_OF_CHANNELS;
    
    	if(encoder->protected_->channels != 2) {
    		encoder->protected_->do_mid_side_stereo = false;
    		encoder->protected_->loose_mid_side_stereo = false;
    	}
    	else if(!encoder->protected_->do_mid_side_stereo)
    		encoder->protected_->loose_mid_side_stereo = false;
    
    	if(encoder->protected_->bits_per_sample < FLAC__MIN_BITS_PER_SAMPLE || encoder->protected_->bits_per_sample > FLAC__MAX_BITS_PER_SAMPLE)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BITS_PER_SAMPLE;
    
    	if(!FLAC__format_sample_rate_is_valid(encoder->protected_->sample_rate))
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_SAMPLE_RATE;
    
    	if(encoder->protected_->blocksize == 0) {
    		if(encoder->protected_->max_lpc_order == 0)
    			encoder->protected_->blocksize = 1152;
    		else
    			encoder->protected_->blocksize = 4096;
    	}
    
    	if(encoder->protected_->blocksize < FLAC__MIN_BLOCK_SIZE || encoder->protected_->blocksize > FLAC__MAX_BLOCK_SIZE)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_BLOCK_SIZE;
    
    	if(encoder->protected_->max_lpc_order > FLAC__MAX_LPC_ORDER)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_MAX_LPC_ORDER;
    
    	if(encoder->protected_->blocksize < encoder->protected_->max_lpc_order)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_BLOCK_SIZE_TOO_SMALL_FOR_LPC_ORDER;
    
    	if(encoder->protected_->qlp_coeff_precision == 0) {
    		if(encoder->protected_->bits_per_sample < 16) {
    			/* @@@ need some data about how to set this here w.r.t. blocksize and sample rate */
    			/* @@@ until then we'll make a guess */
    			encoder->protected_->qlp_coeff_precision = flac_max(FLAC__MIN_QLP_COEFF_PRECISION, 2 + encoder->protected_->bits_per_sample / 2);
    		}
    		else if(encoder->protected_->bits_per_sample == 16) {
    			if(encoder->protected_->blocksize <= 192)
    				encoder->protected_->qlp_coeff_precision = 7;
    			else if(encoder->protected_->blocksize <= 384)
    				encoder->protected_->qlp_coeff_precision = 8;
    			else if(encoder->protected_->blocksize <= 576)
    				encoder->protected_->qlp_coeff_precision = 9;
    			else if(encoder->protected_->blocksize <= 1152)
    				encoder->protected_->qlp_coeff_precision = 10;
    			else if(encoder->protected_->blocksize <= 2304)
    				encoder->protected_->qlp_coeff_precision = 11;
    			else if(encoder->protected_->blocksize <= 4608)
    				encoder->protected_->qlp_coeff_precision = 12;
    			else
    				encoder->protected_->qlp_coeff_precision = 13;
    		}
    		else {
    			if(encoder->protected_->blocksize <= 384)
    				encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-2;
    			else if(encoder->protected_->blocksize <= 1152)
    				encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION-1;
    			else
    				encoder->protected_->qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION;
    		}
    		FLAC__ASSERT(encoder->protected_->qlp_coeff_precision <= FLAC__MAX_QLP_COEFF_PRECISION);
    	}
    	else if(encoder->protected_->qlp_coeff_precision < FLAC__MIN_QLP_COEFF_PRECISION || encoder->protected_->qlp_coeff_precision > FLAC__MAX_QLP_COEFF_PRECISION)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_QLP_COEFF_PRECISION;
    
    	if(encoder->protected_->streamable_subset) {
    		if(!FLAC__format_blocksize_is_subset(encoder->protected_->blocksize, encoder->protected_->sample_rate))
    			return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE;
    		if(!FLAC__format_sample_rate_is_subset(encoder->protected_->sample_rate))
    			return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE;
    		if(
    			encoder->protected_->bits_per_sample != 8 &&
    			encoder->protected_->bits_per_sample != 12 &&
    			encoder->protected_->bits_per_sample != 16 &&
    			encoder->protected_->bits_per_sample != 20 &&
    			encoder->protected_->bits_per_sample != 24 &&
    			encoder->protected_->bits_per_sample != 32
    		)
    			return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE;
    		if(encoder->protected_->max_residual_partition_order > FLAC__SUBSET_MAX_RICE_PARTITION_ORDER)
    			return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE;
    		if(
    			encoder->protected_->sample_rate <= 48000 &&
    			(
    				encoder->protected_->blocksize > FLAC__SUBSET_MAX_BLOCK_SIZE_48000HZ ||
    				encoder->protected_->max_lpc_order > FLAC__SUBSET_MAX_LPC_ORDER_48000HZ
    			)
    		) {
    			return FLAC__STREAM_ENCODER_INIT_STATUS_NOT_STREAMABLE;
    		}
    	}
    
    	if(encoder->protected_->max_residual_partition_order >= (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN))
    		encoder->protected_->max_residual_partition_order = (1u << FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN) - 1;
    	if(encoder->protected_->min_residual_partition_order >= encoder->protected_->max_residual_partition_order)
    		encoder->protected_->min_residual_partition_order = encoder->protected_->max_residual_partition_order;
    
    #if FLAC__HAS_OGG
    	/* drop any seektable for ogg */
    	if(is_ogg && 0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) {
    		uint32_t i1;
    		for(i1 = 0; i1 < encoder->protected_->num_metadata_blocks; i1++) {
    			if(0 != encoder->protected_->metadata[i1] && encoder->protected_->metadata[i1]->type == FLAC__METADATA_TYPE_SEEKTABLE) {
    				encoder->protected_->num_metadata_blocks--;
    				for( ; i1 < encoder->protected_->num_metadata_blocks; i1++)
    					encoder->protected_->metadata[i1] = encoder->protected_->metadata[i1+1];
    				break;
    			}
    		}
    	}
    	/* reorder metadata if necessary to ensure that any VORBIS_COMMENT is the first, according to the mapping spec */
    	if(is_ogg && 0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 1) {
    		uint32_t i1;
    		for(i1 = 1; i1 < encoder->protected_->num_metadata_blocks; i1++) {
    			if(0 != encoder->protected_->metadata[i1] && encoder->protected_->metadata[i1]->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) {
    				FLAC__StreamMetadata *vc = encoder->protected_->metadata[i1];
    				for( ; i1 > 0; i1--)
    					encoder->protected_->metadata[i1] = encoder->protected_->metadata[i1-1];
    				encoder->protected_->metadata[0] = vc;
    				break;
    			}
    		}
    	}
    #endif
    	/* keep track of any SEEKTABLE block */
    	if(0 != encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0) {
    		uint32_t i2;
    		for(i2 = 0; i2 < encoder->protected_->num_metadata_blocks; i2++) {
    			if(0 != encoder->protected_->metadata[i2] && encoder->protected_->metadata[i2]->type == FLAC__METADATA_TYPE_SEEKTABLE) {
    				encoder->private_->seek_table = &encoder->protected_->metadata[i2]->data.seek_table;
    				break; /* take only the first one */
    			}
    		}
    	}
    
    	/* validate metadata */
    	if(0 == encoder->protected_->metadata && encoder->protected_->num_metadata_blocks > 0)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    	metadata_has_seektable = false;
    	metadata_has_vorbis_comment = false;
    	metadata_picture_has_type1 = false;
    	metadata_picture_has_type2 = false;
    	for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
    		const FLAC__StreamMetadata *m = encoder->protected_->metadata[i];
    		if(m->type == FLAC__METADATA_TYPE_STREAMINFO)
    			return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    		else if(m->type == FLAC__METADATA_TYPE_SEEKTABLE) {
    			if(metadata_has_seektable) /* only one is allowed */
    				return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    			metadata_has_seektable = true;
    			if(!FLAC__format_seektable_is_legal(&m->data.seek_table))
    				return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    		}
    		else if(m->type == FLAC__METADATA_TYPE_VORBIS_COMMENT) {
    			if(metadata_has_vorbis_comment) /* only one is allowed */
    				return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    			metadata_has_vorbis_comment = true;
    		}
    		else if(m->type == FLAC__METADATA_TYPE_CUESHEET) {
    			if(!FLAC__format_cuesheet_is_legal(&m->data.cue_sheet, m->data.cue_sheet.is_cd, /*violation=*/0))
    				return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    		}
    		else if(m->type == FLAC__METADATA_TYPE_PICTURE) {
    			if(!FLAC__format_picture_is_legal(&m->data.picture, /*violation=*/0))
    				return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    			if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD) {
    				if(metadata_picture_has_type1) /* there should only be 1 per stream */
    					return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    				metadata_picture_has_type1 = true;
    				/* standard icon must be 32x32 pixel PNG */
    				if(
    					m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON_STANDARD &&
    					(
    						(strcmp(m->data.picture.mime_type, "image/png") && strcmp(m->data.picture.mime_type, "-->")) ||
    						m->data.picture.width != 32 ||
    						m->data.picture.height != 32
    					)
    				)
    					return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    			}
    			else if(m->data.picture.type == FLAC__STREAM_METADATA_PICTURE_TYPE_FILE_ICON) {
    				if(metadata_picture_has_type2) /* there should only be 1 per stream */
    					return FLAC__STREAM_ENCODER_INIT_STATUS_INVALID_METADATA;
    				metadata_picture_has_type2 = true;
    			}
    		}
    	}
    
    	encoder->private_->input_capacity = 0;
    	encoder->private_->current_sample_number = 0;
    	encoder->private_->current_frame_number = 0;
    
    	/*
    	 * get the CPU info and set the function pointers
    	 */
    	FLAC__cpu_info(&encoder->private_->cpuinfo);
    	/* remove cpu info as requested by
    	 * FLAC__stream_encoder_disable_instruction_set */
    	if(encoder->private_->disable_mmx)
    		encoder->private_->cpuinfo.x86.mmx = false;
    	if(encoder->private_->disable_sse2)
    		encoder->private_->cpuinfo.x86.sse2 = false;
    	if(encoder->private_->disable_ssse3)
    		encoder->private_->cpuinfo.x86.ssse3 = false;
    	if(encoder->private_->disable_sse41)
    		encoder->private_->cpuinfo.x86.sse41 = false;
    	if(encoder->private_->disable_sse42)
    		encoder->private_->cpuinfo.x86.sse42 = false;
    	if(encoder->private_->disable_avx2)
    		encoder->private_->cpuinfo.x86.avx2 = false;
    	if(encoder->private_->disable_fma)
    		encoder->private_->cpuinfo.x86.fma = false;
    	/* first default to the non-asm routines */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation;
    #endif
    	encoder->private_->local_precompute_partition_info_sums = precompute_partition_info_sums_;
    	encoder->private_->local_fixed_compute_best_predictor = FLAC__fixed_compute_best_predictor;
    	encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide;
    	encoder->private_->local_fixed_compute_best_predictor_limit_residual = FLAC__fixed_compute_best_predictor_limit_residual;
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients;
    	encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide;
    	encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients;
    #endif
    	/* now override with asm where appropriate */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    # ifndef FLAC__NO_ASM
    #if defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN
    #if FLAC__HAS_A64NEONINTRIN
    	if(encoder->protected_->max_lpc_order < 8)
    		encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_8;
    	else if(encoder->protected_->max_lpc_order < 10)
    		encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_10;
    	else if(encoder->protected_->max_lpc_order < 14)
    		encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_neon_lag_14;
    	else
    		encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation;
    #endif
        encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon;
        encoder->private_->local_lpc_compute_residual_from_qlp_coefficients       = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_neon;
        encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_neon;
    #endif /* defined FLAC__CPU_ARM64 && FLAC__HAS_NEONINTRIN */
    
    	if(encoder->private_->cpuinfo.use_asm) {
    #  ifdef FLAC__CPU_IA32
    		FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_IA32);
    #   if FLAC__HAS_X86INTRIN
    #    ifdef FLAC__SSE2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse2) {
    			if(encoder->protected_->max_lpc_order < 8)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8;
    			else if(encoder->protected_->max_lpc_order < 10)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10;
    			else if(encoder->protected_->max_lpc_order < 14)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14;
    
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients       = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse2;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2;
    		}
    #    endif
    #    ifdef FLAC__SSE4_1_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse41) {
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients       = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_sse41;
    		}
    #    endif
    #    ifdef FLAC__AVX2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.avx2) {
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients       = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2;
    		}
    #    endif
    
    #    ifdef FLAC__SSE2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse2) {
    			encoder->private_->local_fixed_compute_best_predictor      = FLAC__fixed_compute_best_predictor_intrin_sse2;
    		}
    #    endif
    #    ifdef FLAC__SSSE3_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.ssse3) {
    			encoder->private_->local_fixed_compute_best_predictor      = FLAC__fixed_compute_best_predictor_intrin_ssse3;
    		}
    #    endif
    #    ifdef FLAC__SSE4_2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse42) {
    			encoder->private_->local_fixed_compute_best_predictor_limit_residual = FLAC__fixed_compute_best_predictor_limit_residual_intrin_sse42;
    		}
    #    endif
    #    ifdef FLAC__AVX2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.avx2) {
    			encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_avx2;
    			encoder->private_->local_fixed_compute_best_predictor_limit_residual = FLAC__fixed_compute_best_predictor_limit_residual_intrin_avx2;
    		}
    #    endif
    #   endif /* FLAC__HAS_X86INTRIN */
    #  elif defined FLAC__CPU_X86_64
    		FLAC__ASSERT(encoder->private_->cpuinfo.type == FLAC__CPUINFO_TYPE_X86_64);
    #   if FLAC__HAS_X86INTRIN
    #    ifdef FLAC__SSE2_SUPPORTED
    		if(encoder->private_->cpuinfo.x86.sse2) { /* For fuzzing */
    			if(encoder->protected_->max_lpc_order < 8)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_8;
    			else if(encoder->protected_->max_lpc_order < 10)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_10;
    			else if(encoder->protected_->max_lpc_order < 14)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_sse2_lag_14;
    
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_sse2;
    		}
    #    endif
    #    ifdef FLAC__SSE4_1_SUPPORTED
    		if(encoder->private_->cpuinfo.x86.sse41) {
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_sse41;
    		}
    #    endif
    #    ifdef FLAC__AVX2_SUPPORTED
    		if(encoder->private_->cpuinfo.x86.avx2) {
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit = FLAC__lpc_compute_residual_from_qlp_coefficients_16_intrin_avx2;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients       = FLAC__lpc_compute_residual_from_qlp_coefficients_intrin_avx2;
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit = FLAC__lpc_compute_residual_from_qlp_coefficients_wide_intrin_avx2;
    		}
    #    endif
    #    ifdef FLAC__FMA_SUPPORTED
    		if(encoder->private_->cpuinfo.x86.fma) {
    			if(encoder->protected_->max_lpc_order < 8)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_8;
    			else if(encoder->protected_->max_lpc_order < 12)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_12;
    			else if(encoder->protected_->max_lpc_order < 16)
    				encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation_intrin_fma_lag_16;
    		}
    #    endif
    
    
    #    ifdef FLAC__SSE2_SUPPORTED
    		if(encoder->private_->cpuinfo.x86.sse2) { /* For fuzzing */
    			encoder->private_->local_fixed_compute_best_predictor      = FLAC__fixed_compute_best_predictor_intrin_sse2;
    		}
    #    endif
    #    ifdef FLAC__SSSE3_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.ssse3) {
    			encoder->private_->local_fixed_compute_best_predictor      = FLAC__fixed_compute_best_predictor_intrin_ssse3;
    		}
    #    endif
    #    ifdef FLAC__SSE4_2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse42) {
    			encoder->private_->local_fixed_compute_best_predictor_limit_residual = FLAC__fixed_compute_best_predictor_limit_residual_intrin_sse42;
    		}
    #    endif
    #    ifdef FLAC__AVX2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.avx2) {
    			encoder->private_->local_fixed_compute_best_predictor_wide = FLAC__fixed_compute_best_predictor_wide_intrin_avx2;
    			encoder->private_->local_fixed_compute_best_predictor_limit_residual = FLAC__fixed_compute_best_predictor_limit_residual_intrin_avx2;
    		}
    #    endif
    #   endif /* FLAC__HAS_X86INTRIN */
    #  endif /* FLAC__CPU_... */
    	}
    # endif /* !FLAC__NO_ASM */
    
    #endif /* !FLAC__INTEGER_ONLY_LIBRARY */
    #if !defined FLAC__NO_ASM && FLAC__HAS_X86INTRIN
    	if(encoder->private_->cpuinfo.use_asm) {
    # if (defined FLAC__CPU_IA32 || defined FLAC__CPU_X86_64)
    #  ifdef FLAC__SSE2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.sse2)
    			encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_sse2;
    #  endif
    #  ifdef FLAC__SSSE3_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.ssse3)
    			encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_ssse3;
    #  endif
    #  ifdef FLAC__AVX2_SUPPORTED
    		if (encoder->private_->cpuinfo.x86.avx2)
    			encoder->private_->local_precompute_partition_info_sums = FLAC__precompute_partition_info_sums_intrin_avx2;
    #  endif
    # endif /* FLAC__CPU_... */
    	}
    #endif /* !FLAC__NO_ASM && FLAC__HAS_X86INTRIN */
    
    	/* set state to OK; from here on, errors are fatal and we'll override the state then */
    	encoder->protected_->state = FLAC__STREAM_ENCODER_OK;
    
    #if FLAC__HAS_OGG
    	encoder->private_->is_ogg = is_ogg;
    	if(is_ogg && !FLAC__ogg_encoder_aspect_init(&encoder->protected_->ogg_encoder_aspect)) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    #endif
    
    	encoder->private_->read_callback = read_callback;
    	encoder->private_->write_callback = write_callback;
    	encoder->private_->seek_callback = seek_callback;
    	encoder->private_->tell_callback = tell_callback;
    	encoder->private_->metadata_callback = metadata_callback;
    	encoder->private_->client_data = client_data;
    
    	if(encoder->protected_->num_threads > 1) {
    #ifdef HAVE_PTHREAD
    		encoder->private_->num_threadtasks = encoder->protected_->num_threads * 2 + 2; /* First threadtask is reserved for main thread */
    		if(pthread_mutex_init(&encoder->private_->mutex_md5_fifo, NULL)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(pthread_mutex_init(&encoder->private_->mutex_work_queue, NULL)) {
    			pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(pthread_cond_init(&encoder->private_->cond_md5_emptied, NULL)) {
    			pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    			pthread_mutex_destroy(&encoder->private_->mutex_work_queue);
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(pthread_cond_init(&encoder->private_->cond_work_available, NULL)) {
    			pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    			pthread_mutex_destroy(&encoder->private_->mutex_work_queue);
    			pthread_cond_destroy(&encoder->private_->cond_md5_emptied);
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(pthread_cond_init(&encoder->private_->cond_wake_up_thread, NULL)) {
    			pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    			pthread_mutex_destroy(&encoder->private_->mutex_work_queue);
    			pthread_cond_destroy(&encoder->private_->cond_md5_emptied);
    			pthread_cond_destroy(&encoder->private_->cond_work_available);
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(encoder->protected_->do_md5) {
    			encoder->private_->md5_fifo.size = (encoder->protected_->blocksize+OVERREAD_) * (encoder->private_->num_threadtasks + 2);
    			for(i = 0; i < encoder->protected_->channels; i++) {
    				if(0 == (encoder->private_->md5_fifo.data[i] = safe_malloc_mul_2op_p(sizeof(FLAC__int32), /*times*/encoder->private_->md5_fifo.size))) {
    					pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    					pthread_mutex_destroy(&encoder->private_->mutex_work_queue);
    					pthread_cond_destroy(&encoder->private_->cond_md5_emptied);
    					pthread_cond_destroy(&encoder->private_->cond_work_available);
    					pthread_cond_destroy(&encoder->private_->cond_wake_up_thread);
    					encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    					return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    				}
    			}
    		}
    		encoder->private_->md5_fifo.tail = 0;
    		for(t = 1; t < encoder->private_->num_threadtasks; t++) {
    			encoder->private_->threadtask[t] = safe_calloc_(1, sizeof(FLAC__StreamEncoderThreadTask));
    			if(encoder->private_->threadtask[t] == NULL) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    			encoder->private_->threadtask[t]->frame = FLAC__bitwriter_new();
    			if(encoder->private_->threadtask[t]->frame == NULL) {
    				free(encoder->private_->threadtask[t]);
    				encoder->private_->threadtask[t] = 0;
    				encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    			if(pthread_mutex_init(&encoder->private_->threadtask[t]->mutex_this_task, NULL)) {
    				FLAC__bitwriter_delete(encoder->private_->threadtask[t]->frame);
    				free(encoder->private_->threadtask[t]);
    				encoder->private_->threadtask[t] = 0;
    				encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    			if(pthread_cond_init(&encoder->private_->threadtask[t]->cond_task_done, NULL)) {
    				pthread_mutex_destroy(&encoder->private_->threadtask[t]->mutex_this_task);
    				FLAC__bitwriter_delete(encoder->private_->threadtask[t]->frame);
    				free(encoder->private_->threadtask[t]);
    				encoder->private_->threadtask[t] = 0;
    				encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    
    			for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    				encoder->private_->threadtask[t]->subframe_workspace_ptr[i][0] = &encoder->private_->threadtask[t]->subframe_workspace[i][0];
    				encoder->private_->threadtask[t]->subframe_workspace_ptr[i][1] = &encoder->private_->threadtask[t]->subframe_workspace[i][1];
    			}
    			for(i = 0; i < 2; i++) {
    				encoder->private_->threadtask[t]->subframe_workspace_ptr_mid_side[i][0] = &encoder->private_->threadtask[t]->subframe_workspace_mid_side[i][0];
    				encoder->private_->threadtask[t]->subframe_workspace_ptr_mid_side[i][1] = &encoder->private_->threadtask[t]->subframe_workspace_mid_side[i][1];
    			}
    			for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    				encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_ptr[i][0] = &encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][0];
    				encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_ptr[i][1] = &encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][1];
    			}
    			for(i = 0; i < 2; i++) {
    				encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_ptr_mid_side[i][0] = &encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][0];
    				encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_ptr_mid_side[i][1] = &encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][1];
    			}
    
    			for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    				FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][0]);
    				FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][1]);
    			}
    			for(i = 0; i < 2; i++) {
    				FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][0]);
    				FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][1]);
    			}
    			for(i = 0; i < 2; i++)
    				FLAC__format_entropy_coding_method_partitioned_rice_contents_init(&encoder->private_->threadtask[t]->partitioned_rice_contents_extra[i]);
    		}
    #else
    		FLAC__ASSERT(0);
    #endif
    	}
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	for(i = 0; i < encoder->protected_->num_apodizations; i++)
    		encoder->private_->window_unaligned[i] = encoder->private_->window[i] = 0;
    #endif
    	for(t = 0; t < encoder->private_->num_threadtasks; t++) {
    		for(i = 0; i < encoder->protected_->channels; i++) {
    			encoder->private_->threadtask[t]->integer_signal_unaligned[i] = encoder->private_->threadtask[t]->integer_signal[i] = 0;
    		}
    		for(i = 0; i < 2; i++) {
    			encoder->private_->threadtask[t]->integer_signal_mid_side_unaligned[i] = encoder->private_->threadtask[t]->integer_signal_mid_side[i] = 0;
    		}
    		encoder->private_->threadtask[t]->integer_signal_33bit_side_unaligned = encoder->private_->threadtask[t]->integer_signal_33bit_side = 0;
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    		encoder->private_->threadtask[t]->windowed_signal_unaligned = encoder->private_->threadtask[t]->windowed_signal = 0;
    #endif
    		for(i = 0; i < encoder->protected_->channels; i++) {
    			encoder->private_->threadtask[t]->residual_workspace_unaligned[i][0] = encoder->private_->threadtask[t]->residual_workspace[i][0] = 0;
    			encoder->private_->threadtask[t]->residual_workspace_unaligned[i][1] = encoder->private_->threadtask[t]->residual_workspace[i][1] = 0;
    			encoder->private_->threadtask[t]->best_subframe[i] = 0;
    		}
    		for(i = 0; i < 2; i++) {
    			encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[i][0] = encoder->private_->threadtask[t]->residual_workspace_mid_side[i][0] = 0;
    			encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[i][1] = encoder->private_->threadtask[t]->residual_workspace_mid_side[i][1] = 0;
    			encoder->private_->threadtask[t]->best_subframe_mid_side[i] = 0;
    		}
    		encoder->private_->threadtask[t]->abs_residual_partition_sums_unaligned = encoder->private_->threadtask[t]->abs_residual_partition_sums = 0;
    		encoder->private_->threadtask[t]->raw_bits_per_partition_unaligned = encoder->private_->threadtask[t]->raw_bits_per_partition = 0;
    	}
    
    
    	if(!resize_buffers_(encoder, encoder->protected_->blocksize)) {
    		/* the above function sets the state for us in case of an error */
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	for(t = 0; t < encoder->private_->num_threadtasks; t++) {
    		if(!FLAC__bitwriter_init(encoder->private_->threadtask[t]->frame)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    	}
    
    	/*
    	 * Set up the verify stuff if necessary
    	 */
    	if(encoder->protected_->verify) {
    		/*
    		 * First, set up the fifo which will hold the
    		 * original signal to compare against
    		 */
    		encoder->private_->verify.input_fifo.size = (encoder->protected_->blocksize+OVERREAD_) * encoder->private_->num_threadtasks;
    		for(i = 0; i < encoder->protected_->channels; i++) {
    			if(0 == (encoder->private_->verify.input_fifo.data[i] = safe_malloc_mul_2op_p(sizeof(FLAC__int32), /*times*/encoder->private_->verify.input_fifo.size))) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    		}
    		encoder->private_->verify.input_fifo.tail = 0;
    
    		/*
    		 * Now set up a stream decoder for verification
    		 */
    		if(0 == encoder->private_->verify.decoder) {
    			encoder->private_->verify.decoder = FLAC__stream_decoder_new();
    			if(0 == encoder->private_->verify.decoder) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    		}
    
    		if(FLAC__stream_decoder_init_stream(encoder->private_->verify.decoder, verify_read_callback_, /*seek_callback=*/0, /*tell_callback=*/0, /*length_callback=*/0, /*eof_callback=*/0, verify_write_callback_, verify_metadata_callback_, verify_error_callback_, /*client_data=*/encoder) != FLAC__STREAM_DECODER_INIT_STATUS_OK) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    	}
    	encoder->private_->verify.error_stats.absolute_sample = 0;
    	encoder->private_->verify.error_stats.frame_number = 0;
    	encoder->private_->verify.error_stats.channel = 0;
    	encoder->private_->verify.error_stats.sample = 0;
    	encoder->private_->verify.error_stats.expected = 0;
    	encoder->private_->verify.error_stats.got = 0;
    
    	/*
    	 * These must be done before we write any metadata, because that
    	 * calls the write_callback, which uses these values.
    	 */
    	encoder->private_->first_seekpoint_to_check = 0;
    	encoder->private_->samples_written = 0;
    	encoder->protected_->streaminfo_offset = 0;
    	encoder->protected_->seektable_offset = 0;
    	encoder->protected_->audio_offset = 0;
    
    	/*
    	 * write the stream header
    	 */
    	if(encoder->protected_->verify)
    		encoder->private_->verify.state_hint = ENCODER_IN_MAGIC;
    	if(!FLAC__bitwriter_write_raw_uint32(encoder->private_->threadtask[0]->frame, FLAC__STREAM_SYNC, FLAC__STREAM_SYNC_LEN)) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    	if(!write_bitbuffer_(encoder, encoder->private_->threadtask[0], 0, /*is_last_block=*/false)) {
    		/* the above function sets the state for us in case of an error */
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	/*
    	 * write the STREAMINFO metadata block
    	 */
    	if(encoder->protected_->verify)
    		encoder->private_->verify.state_hint = ENCODER_IN_METADATA;
    	encoder->private_->streaminfo.type = FLAC__METADATA_TYPE_STREAMINFO;
    	encoder->private_->streaminfo.is_last = false; /* we will have at a minimum a VORBIS_COMMENT afterwards */
    	encoder->private_->streaminfo.length = FLAC__STREAM_METADATA_STREAMINFO_LENGTH;
    	encoder->private_->streaminfo.data.stream_info.min_blocksize = encoder->protected_->blocksize; /* this encoder uses the same blocksize for the whole stream */
    	encoder->private_->streaminfo.data.stream_info.max_blocksize = encoder->protected_->blocksize;
    	encoder->private_->streaminfo.data.stream_info.min_framesize = 0; /* we don't know this yet; have to fill it in later */
    	encoder->private_->streaminfo.data.stream_info.max_framesize = 0; /* we don't know this yet; have to fill it in later */
    	encoder->private_->streaminfo.data.stream_info.sample_rate = encoder->protected_->sample_rate;
    	encoder->private_->streaminfo.data.stream_info.channels = encoder->protected_->channels;
    	encoder->private_->streaminfo.data.stream_info.bits_per_sample = encoder->protected_->bits_per_sample;
    	encoder->private_->streaminfo.data.stream_info.total_samples = encoder->protected_->total_samples_estimate; /* we will replace this later with the real total */
    	memset(encoder->private_->streaminfo.data.stream_info.md5sum, 0, 16); /* we don't know this yet; have to fill it in later */
    	if(encoder->protected_->do_md5)
    		FLAC__MD5Init(&encoder->private_->md5context);
    	if(!FLAC__add_metadata_block(&encoder->private_->streaminfo, encoder->private_->threadtask[0]->frame, true)) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    	if(!write_bitbuffer_(encoder, encoder->private_->threadtask[0], 0, /*is_last_block=*/false)) {
    		/* the above function sets the state for us in case of an error */
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	/*
    	 * Now that the STREAMINFO block is written, we can init this to an
    	 * absurdly-high value...
    	 */
    	encoder->private_->streaminfo.data.stream_info.min_framesize = (1u << FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN) - 1;
    	/* ... and clear this to 0 */
    	encoder->private_->streaminfo.data.stream_info.total_samples = 0;
    
    	/*
    	 * Check to see if the supplied metadata contains a VORBIS_COMMENT;
    	 * if not, we will write an empty one (FLAC__add_metadata_block()
    	 * automatically supplies the vendor string).
    	 *
    	 * WATCHOUT: the Ogg FLAC mapping requires us to write this block after
    	 * the STREAMINFO.  (In the case that metadata_has_vorbis_comment is
    	 * true it will have already insured that the metadata list is properly
    	 * ordered.)
    	 */
    	if(!metadata_has_vorbis_comment) {
    		FLAC__StreamMetadata vorbis_comment;
    		vorbis_comment.type = FLAC__METADATA_TYPE_VORBIS_COMMENT;
    		vorbis_comment.is_last = (encoder->protected_->num_metadata_blocks == 0);
    		vorbis_comment.length = 4 + 4; /* MAGIC NUMBER */
    		vorbis_comment.data.vorbis_comment.vendor_string.length = 0;
    		vorbis_comment.data.vorbis_comment.vendor_string.entry = 0;
    		vorbis_comment.data.vorbis_comment.num_comments = 0;
    		vorbis_comment.data.vorbis_comment.comments = 0;
    		if(!FLAC__add_metadata_block(&vorbis_comment, encoder->private_->threadtask[0]->frame, true)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(!write_bitbuffer_(encoder, encoder->private_->threadtask[0], 0, /*is_last_block=*/false)) {
    			/* the above function sets the state for us in case of an error */
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    	}
    
    	/*
    	 * write the user's metadata blocks
    	 */
    	for(i = 0; i < encoder->protected_->num_metadata_blocks; i++) {
    		encoder->protected_->metadata[i]->is_last = (i == encoder->protected_->num_metadata_blocks - 1);
    		if(!FLAC__add_metadata_block(encoder->protected_->metadata[i], encoder->private_->threadtask[0]->frame, true)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    		if(!write_bitbuffer_(encoder, encoder->private_->threadtask[0], 0, /*is_last_block=*/false)) {
    			/* the above function sets the state for us in case of an error */
    			return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    		}
    	}
    
    	/* now that all the metadata is written, we save the stream offset */
    	if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &encoder->protected_->audio_offset, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) { /* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */
    		encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	if(encoder->protected_->verify)
    		encoder->private_->verify.state_hint = ENCODER_IN_AUDIO;
    
    	return FLAC__STREAM_ENCODER_INIT_STATUS_OK;
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_stream(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderWriteCallback write_callback,
    	FLAC__StreamEncoderSeekCallback seek_callback,
    	FLAC__StreamEncoderTellCallback tell_callback,
    	FLAC__StreamEncoderMetadataCallback metadata_callback,
    	void *client_data
    )
    {
    	return init_stream_internal_(
    		encoder,
    		/*read_callback=*/0,
    		write_callback,
    		seek_callback,
    		tell_callback,
    		metadata_callback,
    		client_data,
    		/*is_ogg=*/false
    	);
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_stream(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderReadCallback read_callback,
    	FLAC__StreamEncoderWriteCallback write_callback,
    	FLAC__StreamEncoderSeekCallback seek_callback,
    	FLAC__StreamEncoderTellCallback tell_callback,
    	FLAC__StreamEncoderMetadataCallback metadata_callback,
    	void *client_data
    )
    {
    	return init_stream_internal_(
    		encoder,
    		read_callback,
    		write_callback,
    		seek_callback,
    		tell_callback,
    		metadata_callback,
    		client_data,
    		/*is_ogg=*/true
    	);
    }
    
    static FLAC__StreamEncoderInitStatus init_FILE_internal_(
    	FLAC__StreamEncoder *encoder,
    	FILE *file,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data,
    	FLAC__bool is_ogg
    )
    {
    	FLAC__StreamEncoderInitStatus init_status;
    
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != file);
    
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED;
    
    	/* double protection */
    	if(file == 0) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	/*
    	 * To make sure that our file does not go unclosed after an error, we
    	 * must assign the FILE pointer before any further error can occur in
    	 * this routine.
    	 */
    	if(file == stdout)
    		file = get_binary_stdout_(); /* just to be safe */
    
    #ifdef _WIN32
    	/*
    	 * Windows can suffer quite badly from disk fragmentation. This can be
    	 * reduced significantly by setting the output buffer size to be 10MB.
    	 */
    	if(GetFileType((HANDLE)_get_osfhandle(_fileno(file))) == FILE_TYPE_DISK)
    		setvbuf(file, NULL, _IOFBF, 10*1024*1024);
    #endif
    	encoder->private_->file = file;
    
    	encoder->private_->progress_callback = progress_callback;
    	encoder->private_->bytes_written = 0;
    	encoder->private_->samples_written = 0;
    	encoder->private_->frames_written = 0;
    
    	init_status = init_stream_internal_(
    		encoder,
    		encoder->private_->file == stdout? 0 : is_ogg? file_read_callback_ : 0,
    		file_write_callback_,
    		encoder->private_->file == stdout? 0 : file_seek_callback_,
    		encoder->private_->file == stdout? 0 : file_tell_callback_,
    		/*metadata_callback=*/0,
    		client_data,
    		is_ogg
    	);
    	if(init_status != FLAC__STREAM_ENCODER_INIT_STATUS_OK) {
    		/* the above function sets the state for us in case of an error */
    		return init_status;
    	}
    
    	{
    		uint32_t blocksize = FLAC__stream_encoder_get_blocksize(encoder);
    
    		FLAC__ASSERT(blocksize != 0);
    		encoder->private_->total_frames_estimate = (uint32_t)((FLAC__stream_encoder_get_total_samples_estimate(encoder) + blocksize - 1) / blocksize);
    	}
    
    	return init_status;
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_FILE(
    	FLAC__StreamEncoder *encoder,
    	FILE *file,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data
    )
    {
    	return init_FILE_internal_(encoder, file, progress_callback, client_data, /*is_ogg=*/false);
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_FILE(
    	FLAC__StreamEncoder *encoder,
    	FILE *file,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data
    )
    {
    	return init_FILE_internal_(encoder, file, progress_callback, client_data, /*is_ogg=*/true);
    }
    
    static FLAC__StreamEncoderInitStatus init_file_internal_(
    	FLAC__StreamEncoder *encoder,
    	const char *filename,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data,
    	FLAC__bool is_ogg
    )
    {
    	FILE *file;
    
    	FLAC__ASSERT(0 != encoder);
    
    	/*
    	 * To make sure that our file does not go unclosed after an error, we
    	 * have to do the same entrance checks here that are later performed
    	 * in FLAC__stream_encoder_init_FILE() before the FILE* is assigned.
    	 */
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ALREADY_INITIALIZED;
    
    	file = filename? flac_fopen(filename, "w+b") : stdout;
    
    	if(file == 0) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_IO_ERROR;
    		return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    	}
    
    	return init_FILE_internal_(encoder, file, progress_callback, client_data, is_ogg);
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_file(
    	FLAC__StreamEncoder *encoder,
    	const char *filename,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data
    )
    {
    	return init_file_internal_(encoder, filename, progress_callback, client_data, /*is_ogg=*/false);
    }
    
    FLAC_API FLAC__StreamEncoderInitStatus FLAC__stream_encoder_init_ogg_file(
    	FLAC__StreamEncoder *encoder,
    	const char *filename,
    	FLAC__StreamEncoderProgressCallback progress_callback,
    	void *client_data
    )
    {
    	return init_file_internal_(encoder, filename, progress_callback, client_data, /*is_ogg=*/true);
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_finish(FLAC__StreamEncoder *encoder)
    {
    	FLAC__bool error = false;
    
    	if (encoder == NULL)
    		return false;
    
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    
    	if(encoder->protected_->state == FLAC__STREAM_ENCODER_UNINITIALIZED){
    		if(encoder->protected_->metadata){ // True in case FLAC__stream_encoder_set_metadata was used but init failed
    			free(encoder->protected_->metadata);
    			encoder->protected_->metadata = 0;
    			encoder->protected_->num_metadata_blocks = 0;
    		}
    		if(0 != encoder->private_->file) {
    			if(encoder->private_->file != stdout)
    				fclose(encoder->private_->file);
    			encoder->private_->file = 0;
    		}
    		return true;
    	}
    
    	if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK && !encoder->private_->is_being_deleted) {
    		FLAC__bool ok = true;
    		/* first finish threads */
    		if(encoder->protected_->num_threads > 1) {
    #ifdef HAVE_PTHREAD
    			/* This is quite complicated, so here is an explanation on what is supposed to happen
    			 *
    			 * Thread no.0 and threadtask no.0 are reserved for non-threaded operation, so counting
    			 * here starts at 1, which makes things slightly more complicated.
    			 *
    			 * If the file processed was very short compared to the requested number of threadtasks,
    			 * not all threadtasks have been populated yet. Handling that is easy: threadtask no.1 needs
    			 * to be processed first, monotonically increasing until the last populated threadtask is
    			 * processed. This number is stored in encoder->private_->num_started_threadtasks
    			 *
    			 * If the file is longer, the next due frame chronologically might not be in threadtasks
    			 * number 1, because the threadtasks work like a ringbuffer. To access this, the variable
    			 * twrap starts counting at the next due frame, and the modulo operator (%) is used to
    			 * "wrap" the number with the number of threadtasks. So, if the next due task is 3
    			 * and 4 tasks are started, twrap increases 3, 4, 5, 6, and t follows with values 3, 4, 1, 2.
    			 */
    			uint32_t start, end, t, twrap;
    			if(encoder->private_->num_started_threadtasks < encoder->private_->num_threadtasks) {
    				start = 1;
    				end = encoder->private_->num_started_threadtasks;
    			}
    			else {
    				start = encoder->private_->next_thread;
    				end = encoder->private_->next_thread + encoder->private_->num_threadtasks - 1;
    			}
    			for(twrap = start; twrap < end; twrap++) {
    				FLAC__ASSERT(twrap > 0);
    				t = (twrap - 1) % (encoder->private_->num_threadtasks - 1) + 1;
    				/* Lock mutex, if task isn't done yet, wait for condition */
    				pthread_mutex_lock(&encoder->private_->threadtask[t]->mutex_this_task);
    				while(!encoder->private_->threadtask[t]->task_done)
    					pthread_cond_wait(&encoder->private_->threadtask[t]->cond_task_done,&encoder->private_->threadtask[t]->mutex_this_task);
    
    				if(!encoder->private_->threadtask[t]->returnvalue)
    					ok = false;
    				if(ok && !write_bitbuffer_(encoder, encoder->private_->threadtask[t], encoder->protected_->blocksize, 0))
    					ok = false;
    				pthread_mutex_unlock(&encoder->private_->threadtask[t]->mutex_this_task);
    			}
    			/* Wait for MD5 calculation to finish */
    			pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    			while(encoder->private_->md5_active || encoder->private_->md5_fifo.tail > 0) {
    				pthread_cond_wait(&encoder->private_->cond_md5_emptied, &encoder->private_->mutex_work_queue);
    			}
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    #else
    			FLAC__ASSERT(0);
    #endif
    		}
    		if(ok && encoder->private_->current_sample_number != 0) {
    			encoder->protected_->blocksize = encoder->private_->current_sample_number;
    			if(!resize_buffers_(encoder, encoder->protected_->blocksize)) {
    				/* the above function sets the state for us in case of an error */
    				return FLAC__STREAM_ENCODER_INIT_STATUS_ENCODER_ERROR;
    			}
    			if(!process_frame_(encoder, /*is_last_block=*/true))
    				error = true;
    		}
    	}
    
    	if(encoder->protected_->num_threads > 1) {
    #ifdef HAVE_PTHREAD
    		/* Properly finish all threads */
    		uint32_t t;
    		pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    		for(t = 1; t < encoder->private_->num_created_threads; t++)
    			encoder->private_->finish_work_threads = true;
    		pthread_cond_broadcast(&encoder->private_->cond_wake_up_thread);
    		pthread_cond_broadcast(&encoder->private_->cond_work_available);
    		pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    
    		for(t = 1; t < encoder->private_->num_created_threads; t++)
    			pthread_join(encoder->private_->thread[t], NULL);
    #else
    			FLAC__ASSERT(0);
    #endif
    	}
    
    	if(encoder->protected_->do_md5)
    		FLAC__MD5Final(encoder->private_->streaminfo.data.stream_info.md5sum, &encoder->private_->md5context);
    
    	if(!encoder->private_->is_being_deleted) {
    		if(encoder->protected_->state == FLAC__STREAM_ENCODER_OK) {
    			if(encoder->private_->seek_callback) {
    #if FLAC__HAS_OGG
    				if(encoder->private_->is_ogg)
    					update_ogg_metadata_(encoder);
    				else
    #endif
    				update_metadata_(encoder);
    
    				/* check if an error occurred while updating metadata */
    				if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK)
    					error = true;
    			}
    			if(encoder->private_->metadata_callback)
    				encoder->private_->metadata_callback(encoder, &encoder->private_->streaminfo, encoder->private_->client_data);
    		}
    
    		if(encoder->protected_->verify && 0 != encoder->private_->verify.decoder && !FLAC__stream_decoder_finish(encoder->private_->verify.decoder)) {
    			if(!error)
    				encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA;
    			error = true;
    		}
    	}
    
    	if(0 != encoder->private_->file) {
    		if(encoder->private_->file != stdout)
    			fclose(encoder->private_->file);
    		encoder->private_->file = 0;
    	}
    
    #if FLAC__HAS_OGG
    	if(encoder->private_->is_ogg)
    		FLAC__ogg_encoder_aspect_finish(&encoder->protected_->ogg_encoder_aspect);
    #endif
    
    	free_(encoder);
    	set_defaults_(encoder);
    
    	if(!error)
    		encoder->protected_->state = FLAC__STREAM_ENCODER_UNINITIALIZED;
    
    	return !error;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_ogg_serial_number(FLAC__StreamEncoder *encoder, long value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    #if FLAC__HAS_OGG
    	/* can't check encoder->private_->is_ogg since that's not set until init time */
    	FLAC__ogg_encoder_aspect_set_serial_number(&encoder->protected_->ogg_encoder_aspect, value);
    	return true;
    #else
    	(void)value;
    	return false;
    #endif
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_verify(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    #ifndef FLAC__MANDATORY_VERIFY_WHILE_ENCODING
    	encoder->protected_->verify = value;
    #endif
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_streamable_subset(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->streamable_subset = value;
    	return true;
    }
    
    /*
     * The following routine was intended as debug routine and is not in the
     * public headers, but SHOULD NOT CHANGE! It is known is is used in
     * some non-audio projects needing every last bit of performance.
     * See https://github.com/xiph/flac/issues/547 for details. These projects
     * provide their own prototype, so changing the signature of this function
     * would break building.
     */
    FLAC_API FLAC__bool FLAC__stream_encoder_set_do_md5(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->do_md5 = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_channels(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->channels = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_bits_per_sample(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->bits_per_sample = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_sample_rate(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->sample_rate = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_compression_level(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__bool ok = true;
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	if(value >= sizeof(compression_levels_)/sizeof(compression_levels_[0]))
    		value = sizeof(compression_levels_)/sizeof(compression_levels_[0]) - 1;
    	ok &= FLAC__stream_encoder_set_do_mid_side_stereo          (encoder, compression_levels_[value].do_mid_side_stereo);
    	ok &= FLAC__stream_encoder_set_loose_mid_side_stereo       (encoder, compression_levels_[value].loose_mid_side_stereo);
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    #if 1
    	ok &= FLAC__stream_encoder_set_apodization                 (encoder, compression_levels_[value].apodization);
    #else
    	/* equivalent to -A tukey(0.5) */
    	encoder->protected_->num_apodizations = 1;
    	encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY;
    	encoder->protected_->apodizations[0].parameters.tukey.p = 0.5;
    #endif
    #endif
    	ok &= FLAC__stream_encoder_set_max_lpc_order               (encoder, compression_levels_[value].max_lpc_order);
    	ok &= FLAC__stream_encoder_set_qlp_coeff_precision         (encoder, compression_levels_[value].qlp_coeff_precision);
    	ok &= FLAC__stream_encoder_set_do_qlp_coeff_prec_search    (encoder, compression_levels_[value].do_qlp_coeff_prec_search);
    	ok &= FLAC__stream_encoder_set_do_escape_coding            (encoder, compression_levels_[value].do_escape_coding);
    	ok &= FLAC__stream_encoder_set_do_exhaustive_model_search  (encoder, compression_levels_[value].do_exhaustive_model_search);
    	ok &= FLAC__stream_encoder_set_min_residual_partition_order(encoder, compression_levels_[value].min_residual_partition_order);
    	ok &= FLAC__stream_encoder_set_max_residual_partition_order(encoder, compression_levels_[value].max_residual_partition_order);
    	ok &= FLAC__stream_encoder_set_rice_parameter_search_dist  (encoder, compression_levels_[value].rice_parameter_search_dist);
    	return ok;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_blocksize(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->blocksize = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_do_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->do_mid_side_stereo = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_loose_mid_side_stereo(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->loose_mid_side_stereo = value;
    	return true;
    }
    
    /*@@@@add to tests*/
    FLAC_API FLAC__bool FLAC__stream_encoder_set_apodization(FLAC__StreamEncoder *encoder, const char *specification)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	FLAC__ASSERT(0 != specification);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    #ifdef FLAC__INTEGER_ONLY_LIBRARY
    	(void)specification; /* silently ignore since we haven't integerized; will always use a rectangular window */
    #else
    	encoder->protected_->num_apodizations = 0;
    	while(1) {
    		const char *s = strchr(specification, ';');
    		const size_t n = s? (size_t)(s - specification) : strlen(specification);
    		if     (n==8  && 0 == strncmp("bartlett"     , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT;
    		else if(n==13 && 0 == strncmp("bartlett_hann", specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BARTLETT_HANN;
    		else if(n==8  && 0 == strncmp("blackman"     , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN;
    		else if(n==26 && 0 == strncmp("blackman_harris_4term_92db", specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE;
    		else if(n==6  && 0 == strncmp("connes"       , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_CONNES;
    		else if(n==7  && 0 == strncmp("flattop"      , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_FLATTOP;
    		else if(n>7   && 0 == strncmp("gauss("       , specification, 6)) {
    			FLAC__real stddev = (FLAC__real)strtod(specification+6, 0);
    			if (stddev > 0.0 && stddev <= 0.5) {
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.gauss.stddev = stddev;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_GAUSS;
    			}
    		}
    		else if(n==7  && 0 == strncmp("hamming"      , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HAMMING;
    		else if(n==4  && 0 == strncmp("hann"         , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_HANN;
    		else if(n==13 && 0 == strncmp("kaiser_bessel", specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_KAISER_BESSEL;
    		else if(n==7  && 0 == strncmp("nuttall"      , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_NUTTALL;
    		else if(n==9  && 0 == strncmp("rectangle"    , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_RECTANGLE;
    		else if(n==8  && 0 == strncmp("triangle"     , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TRIANGLE;
    		else if(n>7   && 0 == strncmp("tukey("       , specification, 6)) {
    			FLAC__real p = (FLAC__real)strtod(specification+6, 0);
    			if (p >= 0.0 && p <= 1.0) {
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = p;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY;
    			}
    		}
    		else if(n>15   && 0 == strncmp("partial_tukey(", specification, 14)) {
    			FLAC__int32 tukey_parts = (FLAC__int32)strtod(specification+14, 0);
    			const char *si_1 = strchr(specification, '/');
    			FLAC__real overlap = si_1?flac_min((FLAC__real)strtod(si_1+1, 0),0.99f):0.1f;
    			FLAC__real overlap_units = 1.0f/(1.0f - overlap) - 1.0f;
    			const char *si_2 = strchr((si_1?(si_1+1):specification), '/');
    			FLAC__real tukey_p = si_2?(FLAC__real)strtod(si_2+1, 0):0.2f;
    
    			if (tukey_parts <= 1) {
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = tukey_p;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY;
    			}else if (encoder->protected_->num_apodizations + tukey_parts < 32){
    				FLAC__int32 m;
    				for(m = 0; m < tukey_parts; m++){
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.p = tukey_p;
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.start = m/(tukey_parts+overlap_units);
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.end = (m+1+overlap_units)/(tukey_parts+overlap_units);
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_PARTIAL_TUKEY;
    				}
    			}
    		}
    		else if(n>16   && 0 == strncmp("punchout_tukey(", specification, 15)) {
    			FLAC__int32 tukey_parts = (FLAC__int32)strtod(specification+15, 0);
    			const char *si_1 = strchr(specification, '/');
    			FLAC__real overlap = si_1?flac_min((FLAC__real)strtod(si_1+1, 0),0.99f):0.2f;
    			FLAC__real overlap_units = 1.0f/(1.0f - overlap) - 1.0f;
    			const char *si_2 = strchr((si_1?(si_1+1):specification), '/');
    			FLAC__real tukey_p = si_2?(FLAC__real)strtod(si_2+1, 0):0.2f;
    
    			if (tukey_parts <= 1) {
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.tukey.p = tukey_p;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_TUKEY;
    			}else if (encoder->protected_->num_apodizations + tukey_parts < 32){
    				FLAC__int32 m;
    				for(m = 0; m < tukey_parts; m++){
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.p = tukey_p;
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.start = m/(tukey_parts+overlap_units);
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.multiple_tukey.end = (m+1+overlap_units)/(tukey_parts+overlap_units);
    					encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_PUNCHOUT_TUKEY;
    				}
    			}
    		}
    		else if(n>17  && 0 == strncmp("subdivide_tukey(", specification, 16)){
    			FLAC__int32 parts = (FLAC__int32)strtod(specification+16, 0);
    			if(parts > 1){
    				const char *si_1 = strchr(specification, '/');
    				FLAC__real p = si_1?(FLAC__real)strtod(si_1+1, 0):5e-1;
    				if(p > 1)
    					p = 1;
    				else if(p < 0)
    					p = 0;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.subdivide_tukey.parts = parts;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations].parameters.subdivide_tukey.p = p/parts;
    				encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_SUBDIVIDE_TUKEY;
    			}
    		}
    		else if(n==5  && 0 == strncmp("welch"        , specification, n))
    			encoder->protected_->apodizations[encoder->protected_->num_apodizations++].type = FLAC__APODIZATION_WELCH;
    		if (encoder->protected_->num_apodizations == 32)
    			break;
    		if (s)
    			specification = s+1;
    		else
    			break;
    	}
    	if(encoder->protected_->num_apodizations == 0) {
    		encoder->protected_->num_apodizations = 1;
    		encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY;
    		encoder->protected_->apodizations[0].parameters.tukey.p = 0.5;
    	}
    #endif
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_max_lpc_order(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->max_lpc_order = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_qlp_coeff_precision(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->qlp_coeff_precision = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_do_qlp_coeff_prec_search(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->do_qlp_coeff_prec_search = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_do_escape_coding(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    #ifdef FUZZING_BUILD_MODE_UNSAFE_FOR_PRODUCTION
    	/* was deprecated since FLAC 1.0.4 (24-Sep-2002), but is needed for
    	 * full spec coverage, so this should be reenabled at some point.
    	 * For now only enable while fuzzing */
    	encoder->protected_->do_escape_coding = value;
    #else
    	(void)value;
    #endif
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_do_exhaustive_model_search(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->do_exhaustive_model_search = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_min_residual_partition_order(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->min_residual_partition_order = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_max_residual_partition_order(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->max_residual_partition_order = value;
    	return true;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_set_num_threads(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    #ifdef HAVE_PTHREAD
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return FLAC__STREAM_ENCODER_SET_NUM_THREADS_ALREADY_INITIALIZED;
    	if(value > FLAC__STREAM_ENCODER_MAX_THREADS)
    		return FLAC__STREAM_ENCODER_SET_NUM_THREADS_TOO_MANY_THREADS;
    	if(value == 0)
    		encoder->protected_->num_threads = 1;
    	else
    		encoder->protected_->num_threads = value;
    	return FLAC__STREAM_ENCODER_SET_NUM_THREADS_OK;
    #else
    	(void)encoder;
    	(void)value;
    	return FLAC__STREAM_ENCODER_SET_NUM_THREADS_NOT_COMPILED_WITH_MULTITHREADING_ENABLED;
    #endif
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_rice_parameter_search_dist(FLAC__StreamEncoder *encoder, uint32_t value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    #if 0
    	/*@@@ deprecated: */
    	encoder->protected_->rice_parameter_search_dist = value;
    #else
    	(void)value;
    #endif
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_total_samples_estimate(FLAC__StreamEncoder *encoder, FLAC__uint64 value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	value = flac_min(value, (FLAC__U64L(1) << FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN) - 1);
    	encoder->protected_->total_samples_estimate = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_metadata(FLAC__StreamEncoder *encoder, FLAC__StreamMetadata **metadata, uint32_t num_blocks)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	if(0 == metadata)
    		num_blocks = 0;
    	if(0 == num_blocks)
    		metadata = 0;
    	/* realloc() does not do exactly what we want so... */
    	if(encoder->protected_->metadata) {
    		free(encoder->protected_->metadata);
    		encoder->protected_->metadata = 0;
    		encoder->protected_->num_metadata_blocks = 0;
    	}
    	if(num_blocks) {
    		FLAC__StreamMetadata **m;
    		if(0 == (m = safe_malloc_mul_2op_p(sizeof(m[0]), /*times*/num_blocks)))
    			return false;
    		memcpy(m, metadata, sizeof(m[0]) * num_blocks);
    		encoder->protected_->metadata = m;
    		encoder->protected_->num_metadata_blocks = num_blocks;
    	}
    #if FLAC__HAS_OGG
    	if(!FLAC__ogg_encoder_aspect_set_num_metadata(&encoder->protected_->ogg_encoder_aspect, num_blocks))
    		return false;
    #endif
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_set_limit_min_bitrate(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->protected_->limit_min_bitrate = value;
    	return true;
    }
    
    /*
     * These four functions are not static, but not publicly exposed in
     * include/FLAC/ either.  They are used by the test suite and in fuzzing
     */
    FLAC_API FLAC__bool FLAC__stream_encoder_disable_instruction_set(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->private_->disable_mmx = value & 1;
    	encoder->private_->disable_sse2 = value & 2;
    	encoder->private_->disable_ssse3 = value & 4;
    	encoder->private_->disable_sse41 = value & 8;
    	encoder->private_->disable_avx2 = value & 16;
    	encoder->private_->disable_fma = value & 32;
    	encoder->private_->disable_sse42 = value & 64;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_disable_constant_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->private_->disable_constant_subframes = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_disable_fixed_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->private_->disable_fixed_subframes = value;
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_disable_verbatim_subframes(FLAC__StreamEncoder *encoder, FLAC__bool value)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_UNINITIALIZED)
    		return false;
    	encoder->private_->disable_verbatim_subframes = value;
    	return true;
    }
    
    FLAC_API FLAC__StreamEncoderState FLAC__stream_encoder_get_state(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->state;
    }
    
    FLAC_API FLAC__StreamDecoderState FLAC__stream_encoder_get_verify_decoder_state(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->verify)
    		if(encoder->private_->verify.decoder == NULL)
    			return FLAC__STREAM_DECODER_MEMORY_ALLOCATION_ERROR;
    		else
    			return FLAC__stream_decoder_get_state(encoder->private_->verify.decoder);
    	else
    		return FLAC__STREAM_DECODER_UNINITIALIZED;
    }
    
    FLAC_API const char *FLAC__stream_encoder_get_resolved_state_string(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR)
    		return FLAC__StreamEncoderStateString[encoder->protected_->state];
    	else if(!encoder->private_->verify.decoder)
    		return FLAC__StreamEncoderStateString[FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR];
    	else
    		return FLAC__stream_decoder_get_resolved_state_string(encoder->private_->verify.decoder);
    }
    
    FLAC_API void FLAC__stream_encoder_get_verify_decoder_error_stats(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_sample, uint32_t *frame_number, uint32_t *channel, uint32_t *sample, FLAC__int32 *expected, FLAC__int32 *got)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	if(0 != absolute_sample)
    		*absolute_sample = encoder->private_->verify.error_stats.absolute_sample;
    	if(0 != frame_number)
    		*frame_number = encoder->private_->verify.error_stats.frame_number;
    	if(0 != channel)
    		*channel = encoder->private_->verify.error_stats.channel;
    	if(0 != sample)
    		*sample = encoder->private_->verify.error_stats.sample;
    	if(0 != expected)
    		*expected = encoder->private_->verify.error_stats.expected;
    	if(0 != got)
    		*got = encoder->private_->verify.error_stats.got;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_verify(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->verify;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_streamable_subset(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->streamable_subset;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_do_md5(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->do_md5;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_channels(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->channels;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_bits_per_sample(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->bits_per_sample;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_sample_rate(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->sample_rate;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_blocksize(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->blocksize;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_do_mid_side_stereo(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->do_mid_side_stereo;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_loose_mid_side_stereo(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->loose_mid_side_stereo;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_max_lpc_order(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->max_lpc_order;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_qlp_coeff_precision(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->qlp_coeff_precision;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_do_qlp_coeff_prec_search(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->do_qlp_coeff_prec_search;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_do_escape_coding(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->do_escape_coding;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_do_exhaustive_model_search(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->do_exhaustive_model_search;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_min_residual_partition_order(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->min_residual_partition_order;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_num_threads(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->num_threads;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_max_residual_partition_order(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->max_residual_partition_order;
    }
    
    FLAC_API uint32_t FLAC__stream_encoder_get_rice_parameter_search_dist(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->rice_parameter_search_dist;
    }
    
    FLAC_API FLAC__uint64 FLAC__stream_encoder_get_total_samples_estimate(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->total_samples_estimate;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_get_limit_min_bitrate(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    	return encoder->protected_->limit_min_bitrate;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_process(FLAC__StreamEncoder *encoder, const FLAC__int32 * const buffer[], uint32_t samples)
    {
    	uint32_t i, j = 0, k = 0, channel;
    	const uint32_t channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize;
    	const FLAC__int32 sample_max = INT32_MAX >> (32 - encoder->protected_->bits_per_sample);
    	const FLAC__int32 sample_min = INT32_MIN >> (32 - encoder->protected_->bits_per_sample);
    
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK)
    		return false;
    
    	do {
    		const uint32_t n = flac_min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j);
    
    		if(encoder->protected_->verify)
    			append_to_verify_fifo_(&encoder->private_->verify.input_fifo, buffer, j, channels, n);
    
    		for(channel = 0; channel < channels; channel++) {
    			if (buffer[channel] == NULL) {
    				return false;
    			}
    			for(i = encoder->private_->current_sample_number, k = j; i <= blocksize && k < samples; i++, k++) {
    				if(buffer[channel][k] < sample_min || buffer[channel][k] > sample_max){
    					encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    					return false;
    				}
    			}
    			memcpy(&encoder->private_->threadtask[0]->integer_signal[channel][encoder->private_->current_sample_number], &buffer[channel][j], sizeof(buffer[channel][0]) * n);
    		}
    		j += n;
    		encoder->private_->current_sample_number += n;
    
    		/* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */
    		if(encoder->private_->current_sample_number > blocksize) {
    			FLAC__ASSERT(encoder->private_->current_sample_number == blocksize+OVERREAD_);
    			FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */
    			if(!process_frame_(encoder, /*is_last_block=*/false))
    				return false;
    			/* move unprocessed overread samples to beginnings of arrays */
    			for(channel = 0; channel < channels; channel++)
    				encoder->private_->threadtask[0]->integer_signal[channel][0] = encoder->private_->threadtask[0]->integer_signal[channel][blocksize];
    			encoder->private_->current_sample_number = 1;
    		}
    	} while(j < samples);
    
    	return true;
    }
    
    FLAC_API FLAC__bool FLAC__stream_encoder_process_interleaved(FLAC__StreamEncoder *encoder, const FLAC__int32 buffer[], uint32_t samples)
    {
    	uint32_t i, j, k, channel;
    	const uint32_t channels = encoder->protected_->channels, blocksize = encoder->protected_->blocksize;
    	const FLAC__int32 sample_max = INT32_MAX >> (32 - encoder->protected_->bits_per_sample);
    	const FLAC__int32 sample_min = INT32_MIN >> (32 - encoder->protected_->bits_per_sample);
    
    	FLAC__ASSERT(0 != encoder);
    	FLAC__ASSERT(0 != encoder->private_);
    	FLAC__ASSERT(0 != encoder->protected_);
    
    	if(encoder->protected_->state != FLAC__STREAM_ENCODER_OK)
    		return false;
    
    	j = k = 0;
    	do {
    		if(encoder->protected_->verify)
    			append_to_verify_fifo_interleaved_(&encoder->private_->verify.input_fifo, buffer, j, channels, flac_min(blocksize+OVERREAD_-encoder->private_->current_sample_number, samples-j));
    
    			/* "i <= blocksize" to overread 1 sample; see comment in OVERREAD_ decl */
    		for(i = encoder->private_->current_sample_number; i <= blocksize && j < samples; i++, j++) {
    			for(channel = 0; channel < channels; channel++){
    				if(buffer[k] < sample_min || buffer[k] > sample_max){
    					encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    					return false;
    				}
    				encoder->private_->threadtask[0]->integer_signal[channel][i] = buffer[k++];
    			}
    		}
    		encoder->private_->current_sample_number = i;
    		/* we only process if we have a full block + 1 extra sample; final block is always handled by FLAC__stream_encoder_finish() */
    		if(i > blocksize) {
    			if(!process_frame_(encoder, /*is_last_block=*/false))
    				return false;
    			/* move unprocessed overread samples to beginnings of arrays */
    			FLAC__ASSERT(i == blocksize+OVERREAD_);
    			FLAC__ASSERT(OVERREAD_ == 1); /* assert we only overread 1 sample which simplifies the rest of the code below */
    			for(channel = 0; channel < channels; channel++)
    				encoder->private_->threadtask[0]->integer_signal[channel][0] = encoder->private_->threadtask[0]->integer_signal[channel][blocksize];
    			encoder->private_->current_sample_number = 1;
    		}
    	} while(j < samples);
    
    	return true;
    }
    
    /***********************************************************************
     *
     * Private class methods
     *
     ***********************************************************************/
    
    void set_defaults_(FLAC__StreamEncoder *encoder)
    {
    	FLAC__ASSERT(0 != encoder);
    
    #ifdef FLAC__MANDATORY_VERIFY_WHILE_ENCODING
    	encoder->protected_->verify = true;
    #else
    	encoder->protected_->verify = false;
    #endif
    	encoder->protected_->streamable_subset = true;
    	encoder->protected_->do_md5 = true;
    	encoder->protected_->do_mid_side_stereo = false;
    	encoder->protected_->loose_mid_side_stereo = false;
    	encoder->protected_->channels = 2;
    	encoder->protected_->bits_per_sample = 16;
    	encoder->protected_->sample_rate = 44100;
    	encoder->protected_->blocksize = 0;
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	encoder->protected_->num_apodizations = 1;
    	encoder->protected_->apodizations[0].type = FLAC__APODIZATION_TUKEY;
    	encoder->protected_->apodizations[0].parameters.tukey.p = 0.5;
    #endif
    	encoder->protected_->max_lpc_order = 0;
    	encoder->protected_->qlp_coeff_precision = 0;
    	encoder->protected_->do_qlp_coeff_prec_search = false;
    	encoder->protected_->do_exhaustive_model_search = false;
    	encoder->protected_->do_escape_coding = false;
    	encoder->protected_->min_residual_partition_order = 0;
    	encoder->protected_->max_residual_partition_order = 0;
    	encoder->protected_->rice_parameter_search_dist = 0;
    	encoder->protected_->total_samples_estimate = 0;
    	encoder->protected_->limit_min_bitrate = false;
    	encoder->protected_->metadata = 0;
    	encoder->protected_->num_metadata_blocks = 0;
    	encoder->protected_->num_threads = 1;
    
    	encoder->private_->seek_table = 0;
    	encoder->private_->disable_mmx = false;
    	encoder->private_->disable_sse2 = false;
    	encoder->private_->disable_ssse3 = false;
    	encoder->private_->disable_sse41 = false;
    	encoder->private_->disable_sse42 = false;
    	encoder->private_->disable_avx2 = false;
    	encoder->private_->disable_constant_subframes = false;
    	encoder->private_->disable_fixed_subframes = false;
    	encoder->private_->disable_verbatim_subframes = false;
    	encoder->private_->is_ogg = false;
    	encoder->private_->read_callback = 0;
    	encoder->private_->write_callback = 0;
    	encoder->private_->seek_callback = 0;
    	encoder->private_->tell_callback = 0;
    	encoder->private_->metadata_callback = 0;
    	encoder->private_->progress_callback = 0;
    	encoder->private_->client_data = 0;
    	encoder->private_->num_threadtasks = 1;
    #ifdef HAVE_PTHREAD
    	encoder->private_->num_created_threads = 1;
    	encoder->private_->next_thread = 1;
    	encoder->private_->num_running_threads = 1;
    	encoder->private_->num_started_threadtasks = 1;
    	encoder->private_->num_available_threadtasks = 0;
    	encoder->private_->overcommitted_indicator = 0;
    	encoder->private_->next_threadtask = 1;
    	encoder->private_->md5_active = false;
    	encoder->private_->finish_work_threads = false;
    #endif
    
    #if FLAC__HAS_OGG
    	FLAC__ogg_encoder_aspect_set_defaults(&encoder->protected_->ogg_encoder_aspect);
    #endif
    
    	FLAC__stream_encoder_set_compression_level(encoder, 5);
    }
    
    void free_(FLAC__StreamEncoder *encoder)
    {
    	uint32_t i, t, channel;
    
    	FLAC__ASSERT(0 != encoder);
    	if(encoder->protected_->metadata) {
    		free(encoder->protected_->metadata);
    		encoder->protected_->metadata = 0;
    		encoder->protected_->num_metadata_blocks = 0;
    	}
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	for(i = 0; i < encoder->protected_->num_apodizations; i++) {
    		if(0 != encoder->private_->window_unaligned[i]) {
    			free(encoder->private_->window_unaligned[i]);
    			encoder->private_->window_unaligned[i] = 0;
    		}
    	}
    #endif
    	for(t = 0; t < encoder->private_->num_threadtasks; t++) {
    		if(0 == encoder->private_->threadtask[t])
    			continue;
    		for(i = 0; i < encoder->protected_->channels; i++) {
    			if(0 != encoder->private_->threadtask[t]->integer_signal_unaligned[i]) {
    				free(encoder->private_->threadtask[t]->integer_signal_unaligned[i]);
    				encoder->private_->threadtask[t]->integer_signal_unaligned[i] = 0;
    			}
    		}
    		for(i = 0; i < 2; i++) {
    			if(0 != encoder->private_->threadtask[t]->integer_signal_mid_side_unaligned[i]) {
    				free(encoder->private_->threadtask[t]->integer_signal_mid_side_unaligned[i]);
    				encoder->private_->threadtask[t]->integer_signal_mid_side_unaligned[i] = 0;
    			}
    		}
    		if(0 != encoder->private_->threadtask[t]->integer_signal_33bit_side_unaligned){
    			free(encoder->private_->threadtask[t]->integer_signal_33bit_side_unaligned);
    			encoder->private_->threadtask[t]->integer_signal_33bit_side_unaligned = 0;
    		}
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    		if(0 != encoder->private_->threadtask[t]->windowed_signal_unaligned) {
    			free(encoder->private_->threadtask[t]->windowed_signal_unaligned);
    			encoder->private_->threadtask[t]->windowed_signal_unaligned = 0;
    		}
    #endif
    		for(channel = 0; channel < encoder->protected_->channels; channel++) {
    			for(i = 0; i < 2; i++) {
    				if(0 != encoder->private_->threadtask[t]->residual_workspace_unaligned[channel][i]) {
    					free(encoder->private_->threadtask[t]->residual_workspace_unaligned[channel][i]);
    					encoder->private_->threadtask[t]->residual_workspace_unaligned[channel][i] = 0;
    				}
    			}
    		}
    		for(channel = 0; channel < 2; channel++) {
    			for(i = 0; i < 2; i++) {
    				if(0 != encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[channel][i]) {
    					free(encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[channel][i]);
    					encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[channel][i] = 0;
    				}
    			}
    		}
    		if(0 != encoder->private_->threadtask[t]->abs_residual_partition_sums_unaligned) {
    			free(encoder->private_->threadtask[t]->abs_residual_partition_sums_unaligned);
    			encoder->private_->threadtask[t]->abs_residual_partition_sums_unaligned = 0;
    		}
    		if(0 != encoder->private_->threadtask[t]->raw_bits_per_partition_unaligned) {
    			free(encoder->private_->threadtask[t]->raw_bits_per_partition_unaligned);
    			encoder->private_->threadtask[t]->raw_bits_per_partition_unaligned = 0;
    		}
    		for(i = 0; i < FLAC__MAX_CHANNELS; i++) {
    			FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][0]);
    			FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[i][1]);
    		}
    		for(i = 0; i < 2; i++) {
    			FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][0]);
    			FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[i][1]);
    		}
    		for(i = 0; i < 2; i++)
    			FLAC__format_entropy_coding_method_partitioned_rice_contents_clear(&encoder->private_->threadtask[t]->partitioned_rice_contents_extra[i]);
    		if(t > 0) {
    #ifdef HAVE_PTHREAD
    			FLAC__bitwriter_delete(encoder->private_->threadtask[t]->frame);
    			pthread_mutex_destroy(&encoder->private_->threadtask[t]->mutex_this_task);
    			pthread_cond_destroy(&encoder->private_->threadtask[t]->cond_task_done);
    			free(encoder->private_->threadtask[t]);
    			encoder->private_->threadtask[t] = 0;
    #else
    			FLAC__ASSERT(0);
    #endif
    		}
    
    	}
    #ifdef HAVE_PTHREAD
    	if(encoder->protected_->num_threads > 1) {
    		pthread_mutex_destroy(&encoder->private_->mutex_md5_fifo);
    		pthread_mutex_destroy(&encoder->private_->mutex_work_queue);
    		pthread_cond_destroy(&encoder->private_->cond_md5_emptied);
    		pthread_cond_destroy(&encoder->private_->cond_work_available);
    		pthread_cond_destroy(&encoder->private_->cond_wake_up_thread);
    		if(encoder->protected_->do_md5) {
    			for(i = 0; i < encoder->protected_->channels; i++) {
    				if(0 != encoder->private_->md5_fifo.data[i]) {
    					free(encoder->private_->md5_fifo.data[i]);
    					encoder->private_->md5_fifo.data[i] = 0;
    				}
    			}
    		}
    
    	}
    #endif
    	if(encoder->protected_->verify) {
    		for(i = 0; i < encoder->protected_->channels; i++) {
    			if(0 != encoder->private_->verify.input_fifo.data[i]) {
    				free(encoder->private_->verify.input_fifo.data[i]);
    				encoder->private_->verify.input_fifo.data[i] = 0;
    			}
    		}
    	}
    }
    
    FLAC__bool resize_buffers_(FLAC__StreamEncoder *encoder, uint32_t new_blocksize)
    {
    	FLAC__bool ok;
    	uint32_t i, t, channel;
    
    	FLAC__ASSERT(new_blocksize > 0);
    	FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
    
    	ok = true;
    
    	/* To avoid excessive malloc'ing, we only grow the buffer; no shrinking. */
    	if(new_blocksize > encoder->private_->input_capacity) {
    
    		/* WATCHOUT: FLAC__lpc_compute_residual_from_qlp_coefficients_asm_ia32_mmx() and ..._intrin_sse2()
    		 * require that the input arrays (in our case the integer signals)
    		 * have a buffer of up to 3 zeroes in front (at negative indices) for
    		 * alignment purposes; we use 4 in front to keep the data well-aligned.
    		 */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    		if(ok && encoder->protected_->max_lpc_order > 0) {
    			for(i = 0; ok && i < encoder->protected_->num_apodizations; i++)
    				ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->window_unaligned[i], &encoder->private_->window[i]);
    		}
    #endif
    		for(t = 0; t < encoder->private_->num_threadtasks; t++) {
    			for(i = 0; ok && i < encoder->protected_->channels; i++) {
    				ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->threadtask[t]->integer_signal_unaligned[i], &encoder->private_->threadtask[t]->integer_signal[i]);
    				if(ok) {
    					memset(encoder->private_->threadtask[t]->integer_signal[i], 0, sizeof(FLAC__int32)*4);
    					encoder->private_->threadtask[t]->integer_signal[i] += 4;
    				}
    			}
    			for(i = 0; ok && i < 2; i++) {
    				ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize+4+OVERREAD_, &encoder->private_->threadtask[t]->integer_signal_mid_side_unaligned[i], &encoder->private_->threadtask[t]->integer_signal_mid_side[i]);
    				if(ok) {
    					memset(encoder->private_->threadtask[t]->integer_signal_mid_side[i], 0, sizeof(FLAC__int32)*4);
    					encoder->private_->threadtask[t]->integer_signal_mid_side[i] += 4;
    				}
    			}
    			ok = ok && FLAC__memory_alloc_aligned_int64_array(new_blocksize+4+OVERREAD_, &encoder->private_->threadtask[t]->integer_signal_33bit_side_unaligned, &encoder->private_->threadtask[t]->integer_signal_33bit_side);
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    			if(ok && encoder->protected_->max_lpc_order > 0) {
    				ok = ok && FLAC__memory_alloc_aligned_real_array(new_blocksize, &encoder->private_->threadtask[t]->windowed_signal_unaligned, &encoder->private_->threadtask[t]->windowed_signal);
    			}
    #endif
    			for(channel = 0; ok && channel < encoder->protected_->channels; channel++) {
    				for(i = 0; ok && i < 2; i++) {
    					ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->threadtask[t]->residual_workspace_unaligned[channel][i], &encoder->private_->threadtask[t]->residual_workspace[channel][i]);
    				}
    			}
    
    
    			for(channel = 0; ok && channel < encoder->protected_->channels; channel++) {
    				for(i = 0; ok && i < 2; i++) {
    					ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[channel][i], encoder->protected_->max_residual_partition_order);
    					ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace[channel][i], encoder->protected_->max_residual_partition_order);
    				}
    			}
    
    			for(channel = 0; ok && channel < 2; channel++) {
    				for(i = 0; ok && i < 2; i++) {
    					ok = ok && FLAC__memory_alloc_aligned_int32_array(new_blocksize, &encoder->private_->threadtask[t]->residual_workspace_mid_side_unaligned[channel][i], &encoder->private_->threadtask[t]->residual_workspace_mid_side[channel][i]);
    				}
    			}
    
    			for(channel = 0; ok && channel < 2; channel++) {
    				for(i = 0; ok && i < 2; i++) {
    					ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->threadtask[t]->partitioned_rice_contents_workspace_mid_side[channel][i], encoder->protected_->max_residual_partition_order);
    				}
    			}
    
    			for(i = 0; ok && i < 2; i++) {
    				ok = ok && FLAC__format_entropy_coding_method_partitioned_rice_contents_ensure_size(&encoder->private_->threadtask[t]->partitioned_rice_contents_extra[i], encoder->protected_->max_residual_partition_order);
    			}
    
    
    			/* the *2 is an approximation to the series 1 + 1/2 + 1/4 + ... that sums tree occupies in a flat array */
    			/*@@@ new_blocksize*2 is too pessimistic, but to fix, we need smarter logic because a smaller new_blocksize can actually increase the # of partitions; would require moving this out into a separate function, then checking its capacity against the need of the current blocksize&min/max_partition_order (and maybe predictor order) */
    			ok = ok && FLAC__memory_alloc_aligned_uint64_array(new_blocksize * 2, &encoder->private_->threadtask[t]->abs_residual_partition_sums_unaligned, &encoder->private_->threadtask[t]->abs_residual_partition_sums);
    			if(encoder->protected_->do_escape_coding)
    				ok = ok && FLAC__memory_alloc_aligned_uint32_array(new_blocksize * 2, &encoder->private_->threadtask[t]->raw_bits_per_partition_unaligned, &encoder->private_->threadtask[t]->raw_bits_per_partition);
    		}
    }
    	if(ok)
    		encoder->private_->input_capacity = new_blocksize;
    	else {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    		return ok;
    	}
    
    
    	/* now adjust the windows if the blocksize has changed */
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	if(encoder->protected_->max_lpc_order > 0 && new_blocksize > 1) {
    		for(i = 0; i < encoder->protected_->num_apodizations; i++) {
    			switch(encoder->protected_->apodizations[i].type) {
    				case FLAC__APODIZATION_BARTLETT:
    					FLAC__window_bartlett(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_BARTLETT_HANN:
    					FLAC__window_bartlett_hann(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_BLACKMAN:
    					FLAC__window_blackman(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_BLACKMAN_HARRIS_4TERM_92DB_SIDELOBE:
    					FLAC__window_blackman_harris_4term_92db_sidelobe(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_CONNES:
    					FLAC__window_connes(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_FLATTOP:
    					FLAC__window_flattop(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_GAUSS:
    					FLAC__window_gauss(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.gauss.stddev);
    					break;
    				case FLAC__APODIZATION_HAMMING:
    					FLAC__window_hamming(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_HANN:
    					FLAC__window_hann(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_KAISER_BESSEL:
    					FLAC__window_kaiser_bessel(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_NUTTALL:
    					FLAC__window_nuttall(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_RECTANGLE:
    					FLAC__window_rectangle(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_TRIANGLE:
    					FLAC__window_triangle(encoder->private_->window[i], new_blocksize);
    					break;
    				case FLAC__APODIZATION_TUKEY:
    					FLAC__window_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.tukey.p);
    					break;
    				case FLAC__APODIZATION_PARTIAL_TUKEY:
    					FLAC__window_partial_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.multiple_tukey.p, encoder->protected_->apodizations[i].parameters.multiple_tukey.start, encoder->protected_->apodizations[i].parameters.multiple_tukey.end);
    					break;
    				case FLAC__APODIZATION_PUNCHOUT_TUKEY:
    					FLAC__window_punchout_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.multiple_tukey.p, encoder->protected_->apodizations[i].parameters.multiple_tukey.start, encoder->protected_->apodizations[i].parameters.multiple_tukey.end);
    					break;
    				case FLAC__APODIZATION_SUBDIVIDE_TUKEY:
    					FLAC__window_tukey(encoder->private_->window[i], new_blocksize, encoder->protected_->apodizations[i].parameters.tukey.p);
    					break;
    				case FLAC__APODIZATION_WELCH:
    					FLAC__window_welch(encoder->private_->window[i], new_blocksize);
    					break;
    				default:
    					FLAC__ASSERT(0);
    					/* double protection */
    					FLAC__window_hann(encoder->private_->window[i], new_blocksize);
    					break;
    			}
    		}
    	}
    	if (new_blocksize <= FLAC__MAX_LPC_ORDER) {
    		/* intrinsics autocorrelation routines do not all handle cases in which lag might be
    		 * larger than data_len. Lag is one larger than the LPC order */
    		encoder->private_->local_lpc_compute_autocorrelation = FLAC__lpc_compute_autocorrelation;
    	}
    #endif
    
    	return true;
    }
    
    FLAC__bool write_bitbuffer_(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderThreadTask *threadtask, uint32_t samples, FLAC__bool is_last_block)
    {
    	const FLAC__byte *buffer;
    	size_t bytes;
    
    	FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(threadtask->frame));
    
    	if(!FLAC__bitwriter_get_buffer(threadtask->frame, &buffer, &bytes)) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    		return false;
    	}
    
    	if(encoder->protected_->verify) {
    		encoder->private_->verify.output.data = buffer;
    		encoder->private_->verify.output.bytes = bytes;
    		if(encoder->private_->verify.state_hint == ENCODER_IN_MAGIC) {
    			encoder->private_->verify.needs_magic_hack = true;
    		}
    		else {
    			if(!FLAC__stream_decoder_process_single(encoder->private_->verify.decoder)
    			    || (!is_last_block
    				    && (FLAC__stream_encoder_get_verify_decoder_state(encoder) == FLAC__STREAM_DECODER_END_OF_STREAM))
    			    || encoder->protected_->state == FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR /* Happens when error callback was used */) {
    				FLAC__bitwriter_release_buffer(threadtask->frame);
    				FLAC__bitwriter_clear(threadtask->frame);
    				if(encoder->protected_->state != FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA)
    					encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
    				return false;
    			}
    		}
    	}
    
    	if(write_frame_(encoder, buffer, bytes, samples, is_last_block) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    		FLAC__bitwriter_release_buffer(threadtask->frame);
    		FLAC__bitwriter_clear(threadtask->frame);
    		encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    		return false;
    	}
    
    	FLAC__bitwriter_release_buffer(threadtask->frame);
    	FLAC__bitwriter_clear(threadtask->frame);
    
    	if(samples > 0) {
    		encoder->private_->streaminfo.data.stream_info.min_framesize = flac_min(bytes, encoder->private_->streaminfo.data.stream_info.min_framesize);
    		encoder->private_->streaminfo.data.stream_info.max_framesize = flac_max(bytes, encoder->private_->streaminfo.data.stream_info.max_framesize);
    	}
    
    	return true;
    }
    
    FLAC__StreamEncoderWriteStatus write_frame_(FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, FLAC__bool is_last_block)
    {
    	FLAC__StreamEncoderWriteStatus status;
    	FLAC__uint64 output_position = 0;
    
    #if FLAC__HAS_OGG == 0
    	(void)is_last_block;
    #endif
    
    	/*
    	 * Watch for the STREAMINFO block and first SEEKTABLE block to go by and store their offsets.
    	 */
    	if(samples == 0) {
    		FLAC__MetadataType type = (buffer[0] & 0x7f);
    
    		/* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */
    		if(encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &output_position, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR;
    		}
    
    		if(type == FLAC__METADATA_TYPE_STREAMINFO)
    			encoder->protected_->streaminfo_offset = output_position;
    		else if(type == FLAC__METADATA_TYPE_SEEKTABLE && encoder->protected_->seektable_offset == 0)
    			encoder->protected_->seektable_offset = output_position;
    	}
    
    	/*
    	 * Mark the current seek point if hit (if audio_offset == 0 that
    	 * means we're still writing metadata and haven't hit the first
    	 * frame yet)
    	 */
    	if(0 != encoder->private_->seek_table && encoder->protected_->audio_offset > 0 && encoder->private_->seek_table->num_points > 0) {
    		const uint32_t blocksize = FLAC__stream_encoder_get_blocksize(encoder);
    		const FLAC__uint64 frame_first_sample = encoder->private_->samples_written;
    		const FLAC__uint64 frame_last_sample = frame_first_sample + (FLAC__uint64)blocksize - 1;
    		FLAC__uint64 test_sample;
    		uint32_t i;
    		for(i = encoder->private_->first_seekpoint_to_check; i < encoder->private_->seek_table->num_points; i++) {
    			test_sample = encoder->private_->seek_table->points[i].sample_number;
    			if(test_sample > frame_last_sample) {
    				break;
    			}
    			else if(test_sample >= frame_first_sample) {
    				/* FLAC__STREAM_ENCODER_TELL_STATUS_UNSUPPORTED just means we didn't get the offset; no error */
    				if(output_position == 0 && encoder->private_->tell_callback && encoder->private_->tell_callback(encoder, &output_position, encoder->private_->client_data) == FLAC__STREAM_ENCODER_TELL_STATUS_ERROR) {
    					encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    					return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR;
    				}
    
    				encoder->private_->seek_table->points[i].sample_number = frame_first_sample;
    				encoder->private_->seek_table->points[i].stream_offset = output_position - encoder->protected_->audio_offset;
    				encoder->private_->seek_table->points[i].frame_samples = blocksize;
    				encoder->private_->first_seekpoint_to_check++;
    				/* DO NOT: "break;" and here's why:
    				 * The seektable template may contain more than one target
    				 * sample for any given frame; we will keep looping, generating
    				 * duplicate seekpoints for them, and we'll clean it up later,
    				 * just before writing the seektable back to the metadata.
    				 */
    			}
    			else {
    				encoder->private_->first_seekpoint_to_check++;
    			}
    		}
    	}
    
    #if FLAC__HAS_OGG
    	if(encoder->private_->is_ogg) {
    		status = FLAC__ogg_encoder_aspect_write_callback_wrapper(
    			&encoder->protected_->ogg_encoder_aspect,
    			buffer,
    			bytes,
    			samples,
    			encoder->private_->current_frame_number,
    			is_last_block,
    			(FLAC__OggEncoderAspectWriteCallbackProxy)encoder->private_->write_callback,
    			encoder,
    			encoder->private_->client_data
    		);
    	}
    	else
    #endif
    	status = encoder->private_->write_callback(encoder, buffer, bytes, samples, encoder->private_->current_frame_number, encoder->private_->client_data);
    
    	if(status == FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    		encoder->private_->bytes_written += bytes;
    		encoder->private_->samples_written += samples;
    		/* we keep a high watermark on the number of frames written because
    		 * when the encoder goes back to write metadata, 'current_frame'
    		 * will drop back to 0.
    		 */
    		encoder->private_->frames_written = flac_max(encoder->private_->frames_written, encoder->private_->current_frame_number+1);
    	}
    	else
    		encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    
    	return status;
    }
    
    /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks.  */
    void update_metadata_(const FLAC__StreamEncoder *encoder)
    {
    	FLAC__byte b[flac_max(6u, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)];
    	const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo;
    	FLAC__uint64 samples = metadata->data.stream_info.total_samples;
    	const uint32_t min_framesize = metadata->data.stream_info.min_framesize;
    	const uint32_t max_framesize = metadata->data.stream_info.max_framesize;
    	const uint32_t bps = metadata->data.stream_info.bits_per_sample;
    	FLAC__StreamEncoderSeekStatus seek_status;
    
    	FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO);
    
    	/* All this is based on intimate knowledge of the stream header
    	 * layout, but a change to the header format that would break this
    	 * would also break all streams encoded in the previous format.
    	 */
    
    	/*
    	 * Write MD5 signature
    	 */
    	{
    		const uint32_t md5_offset =
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN
    			) / 8;
    
    		if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + md5_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
    			if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
    				encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    		if(encoder->private_->write_callback(encoder, metadata->data.stream_info.md5sum, 16, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    	}
    
    	/*
    	 * Write total samples
    	 */
    	{
    		const uint32_t total_samples_byte_offset =
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN
    				- 4
    			) / 8;
    		FLAC__uint64 samples_uint36 = samples;
    		if(samples > (FLAC__U64L(1) << FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN))
    			samples_uint36 = 0;
    
    		b[0] = ((FLAC__byte)(bps-1) << 4) | (FLAC__byte)((samples_uint36 >> 32) & 0x0F);
    		b[1] = (FLAC__byte)((samples_uint36 >> 24) & 0xFF);
    		b[2] = (FLAC__byte)((samples_uint36 >> 16) & 0xFF);
    		b[3] = (FLAC__byte)((samples_uint36 >> 8) & 0xFF);
    		b[4] = (FLAC__byte)(samples_uint36 & 0xFF);
    		if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + total_samples_byte_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
    			if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
    				encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    		if(encoder->private_->write_callback(encoder, b, 5, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    	}
    
    	/*
    	 * Write min/max framesize
    	 */
    	{
    		const uint32_t min_framesize_offset =
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN
    			) / 8;
    
    		b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF);
    		b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF);
    		b[2] = (FLAC__byte)(min_framesize & 0xFF);
    		b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF);
    		b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF);
    		b[5] = (FLAC__byte)(max_framesize & 0xFF);
    		if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->streaminfo_offset + min_framesize_offset, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
    			if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
    				encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    		if(encoder->private_->write_callback(encoder, b, 6, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    	}
    
    	/*
    	 * Write seektable
    	 */
    	if(0 != encoder->private_->seek_table && encoder->private_->seek_table->num_points > 0 && encoder->protected_->seektable_offset > 0) {
    		uint32_t i;
    
    		/* Convert unused seekpoints to placeholders */
    		for(i = 0; i < encoder->private_->seek_table->num_points; i++)
    			if(encoder->private_->seek_table->points[i].sample_number > samples)
    				encoder->private_->seek_table->points[i].sample_number = FLAC__STREAM_METADATA_SEEKPOINT_PLACEHOLDER;
    
    		FLAC__format_seektable_sort(encoder->private_->seek_table);
    
    		FLAC__ASSERT(FLAC__format_seektable_is_legal(encoder->private_->seek_table));
    
    		if((seek_status = encoder->private_->seek_callback(encoder, encoder->protected_->seektable_offset + FLAC__STREAM_METADATA_HEADER_LENGTH, encoder->private_->client_data)) != FLAC__STREAM_ENCODER_SEEK_STATUS_OK) {
    			if(seek_status == FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR)
    				encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    			return;
    		}
    
    		for(i = 0; i < encoder->private_->seek_table->num_points; i++) {
    			FLAC__uint64 xx;
    			uint32_t x;
    			xx = encoder->private_->seek_table->points[i].sample_number;
    			b[7] = (FLAC__byte)xx; xx >>= 8;
    			b[6] = (FLAC__byte)xx; xx >>= 8;
    			b[5] = (FLAC__byte)xx; xx >>= 8;
    			b[4] = (FLAC__byte)xx; xx >>= 8;
    			b[3] = (FLAC__byte)xx; xx >>= 8;
    			b[2] = (FLAC__byte)xx; xx >>= 8;
    			b[1] = (FLAC__byte)xx; xx >>= 8;
    			b[0] = (FLAC__byte)xx; xx >>= 8;
    			xx = encoder->private_->seek_table->points[i].stream_offset;
    			b[15] = (FLAC__byte)xx; xx >>= 8;
    			b[14] = (FLAC__byte)xx; xx >>= 8;
    			b[13] = (FLAC__byte)xx; xx >>= 8;
    			b[12] = (FLAC__byte)xx; xx >>= 8;
    			b[11] = (FLAC__byte)xx; xx >>= 8;
    			b[10] = (FLAC__byte)xx; xx >>= 8;
    			b[9] = (FLAC__byte)xx; xx >>= 8;
    			b[8] = (FLAC__byte)xx; xx >>= 8;
    			x = encoder->private_->seek_table->points[i].frame_samples;
    			b[17] = (FLAC__byte)x; x >>= 8;
    			b[16] = (FLAC__byte)x; x >>= 8;
    			if(encoder->private_->write_callback(encoder, b, 18, 0, 0, encoder->private_->client_data) != FLAC__STREAM_ENCODER_WRITE_STATUS_OK) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_CLIENT_ERROR;
    				return;
    			}
    		}
    	}
    }
    
    #if FLAC__HAS_OGG
    /* Gets called when the encoding process has finished so that we can update the STREAMINFO and SEEKTABLE blocks.  */
    void update_ogg_metadata_(FLAC__StreamEncoder *encoder)
    {
    	/* the # of bytes in the 1st packet that precede the STREAMINFO */
    	static const uint32_t FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH =
    		FLAC__OGG_MAPPING_PACKET_TYPE_LENGTH +
    		FLAC__OGG_MAPPING_MAGIC_LENGTH +
    		FLAC__OGG_MAPPING_VERSION_MAJOR_LENGTH +
    		FLAC__OGG_MAPPING_VERSION_MINOR_LENGTH +
    		FLAC__OGG_MAPPING_NUM_HEADERS_LENGTH +
    		FLAC__STREAM_SYNC_LENGTH
    	;
    	FLAC__byte b[flac_max(6u, FLAC__STREAM_METADATA_SEEKPOINT_LENGTH)];
    	const FLAC__StreamMetadata *metadata = &encoder->private_->streaminfo;
    	const FLAC__uint64 samples = metadata->data.stream_info.total_samples;
    	const uint32_t min_framesize = metadata->data.stream_info.min_framesize;
    	const uint32_t max_framesize = metadata->data.stream_info.max_framesize;
    	ogg_page page;
    
    	FLAC__ASSERT(metadata->type == FLAC__METADATA_TYPE_STREAMINFO);
    	FLAC__ASSERT(0 != encoder->private_->seek_callback);
    
    	/* Pre-check that client supports seeking, since we don't want the
    	 * ogg_helper code to ever have to deal with this condition.
    	 */
    	if(encoder->private_->seek_callback(encoder, 0, encoder->private_->client_data) == FLAC__STREAM_ENCODER_SEEK_STATUS_UNSUPPORTED)
    		return;
    
    	/* All this is based on intimate knowledge of the stream header
    	 * layout, but a change to the header format that would break this
    	 * would also break all streams encoded in the previous format.
    	 */
    
    	/**
    	 ** Write STREAMINFO stats
    	 **/
    	simple_ogg_page__init(&page);
    	if(!simple_ogg_page__get_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->read_callback, encoder->private_->client_data)) {
    		simple_ogg_page__clear(&page);
    		return; /* state already set */
    	}
    
    	/*
    	 * Write MD5 signature
    	 */
    	{
    		const uint32_t md5_offset =
    			FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH +
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_TOTAL_SAMPLES_LEN
    			) / 8;
    
    		if(md5_offset + 16 > (uint32_t)page.body_len) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
    			simple_ogg_page__clear(&page);
    			return;
    		}
    		memcpy(page.body + md5_offset, metadata->data.stream_info.md5sum, 16);
    	}
    
    	/*
    	 * Write total samples
    	 */
    	{
    		const uint32_t total_samples_byte_offset =
    			FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH +
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_FRAME_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_SAMPLE_RATE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_CHANNELS_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_BITS_PER_SAMPLE_LEN
    				- 4
    			) / 8;
    
    		if(total_samples_byte_offset + 5 > (uint32_t)page.body_len) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
    			simple_ogg_page__clear(&page);
    			return;
    		}
    		b[0] = (FLAC__byte)page.body[total_samples_byte_offset] & 0xF0;
    		b[0] |= (FLAC__byte)((samples >> 32) & 0x0F);
    		b[1] = (FLAC__byte)((samples >> 24) & 0xFF);
    		b[2] = (FLAC__byte)((samples >> 16) & 0xFF);
    		b[3] = (FLAC__byte)((samples >> 8) & 0xFF);
    		b[4] = (FLAC__byte)(samples & 0xFF);
    		memcpy(page.body + total_samples_byte_offset, b, 5);
    	}
    
    	/*
    	 * Write min/max framesize
    	 */
    	{
    		const uint32_t min_framesize_offset =
    			FIRST_OGG_PACKET_STREAMINFO_PREFIX_LENGTH +
    			FLAC__STREAM_METADATA_HEADER_LENGTH +
    			(
    				FLAC__STREAM_METADATA_STREAMINFO_MIN_BLOCK_SIZE_LEN +
    				FLAC__STREAM_METADATA_STREAMINFO_MAX_BLOCK_SIZE_LEN
    			) / 8;
    
    		if(min_framesize_offset + 6 > (uint32_t)page.body_len) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_OGG_ERROR;
    			simple_ogg_page__clear(&page);
    			return;
    		}
    		b[0] = (FLAC__byte)((min_framesize >> 16) & 0xFF);
    		b[1] = (FLAC__byte)((min_framesize >> 8) & 0xFF);
    		b[2] = (FLAC__byte)(min_framesize & 0xFF);
    		b[3] = (FLAC__byte)((max_framesize >> 16) & 0xFF);
    		b[4] = (FLAC__byte)((max_framesize >> 8) & 0xFF);
    		b[5] = (FLAC__byte)(max_framesize & 0xFF);
    		memcpy(page.body + min_framesize_offset, b, 6);
    	}
    	if(!simple_ogg_page__set_at(encoder, encoder->protected_->streaminfo_offset, &page, encoder->private_->seek_callback, encoder->private_->write_callback, encoder->private_->client_data)) {
    		simple_ogg_page__clear(&page);
    		return; /* state already set */
    	}
    	simple_ogg_page__clear(&page);
    }
    #endif
    
    FLAC__bool process_frame_(FLAC__StreamEncoder *encoder, FLAC__bool is_last_block)
    {
    	FLAC__uint16 crc;
    #ifdef HAVE_PTHREAD
    	uint32_t i;
    #endif
    	if(encoder->protected_->num_threads < 2 || is_last_block) {
    
    		FLAC__ASSERT(encoder->protected_->state == FLAC__STREAM_ENCODER_OK);
    
    		/*
    		 * Accumulate raw signal to the MD5 signature
    		 */
    		if(encoder->protected_->do_md5 && !FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->threadtask[0]->integer_signal, encoder->protected_->channels, encoder->protected_->blocksize, (encoder->protected_->bits_per_sample+7) / 8)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return false;
    		}
    
    		/*
    		 * Process the frame header and subframes into the frame bitbuffer
    		 */
    		encoder->private_->threadtask[0]->current_frame_number = encoder->private_->current_frame_number;
    		if(!process_subframes_(encoder, encoder->private_->threadtask[0])) {
    			/* the above function sets the state for us in case of an error */
    			return false;
    		}
    
    		/*
    		 * Zero-pad the frame to a byte_boundary
    		 */
    		if(!FLAC__bitwriter_zero_pad_to_byte_boundary(encoder->private_->threadtask[0]->frame)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return false;
    		}
    
    		/*
    		 * CRC-16 the whole thing
    		 */
    		FLAC__ASSERT(FLAC__bitwriter_is_byte_aligned(encoder->private_->threadtask[0]->frame));
    		if(
    			!FLAC__bitwriter_get_write_crc16(encoder->private_->threadtask[0]->frame, &crc) ||
    			!FLAC__bitwriter_write_raw_uint32(encoder->private_->threadtask[0]->frame, crc, FLAC__FRAME_FOOTER_CRC_LEN)
    		) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    			return false;
    		}
    
    		/*
    		 * Write it
    		 */
    		if(!write_bitbuffer_(encoder, encoder->private_->threadtask[0], encoder->protected_->blocksize, is_last_block)) {
    			/* the above function sets the state for us in case of an error */
    			return false;
    		}
    	}
    	else {
    #ifdef HAVE_PTHREAD
    		/* This bit is quite complicated, so here are some pointers:
    		 *
    		 * When this bit of code is reached for the first time, new threads are spawned and
    		 * threadtasks are populated until the total number of threads equals the requested number
    		 * of threads. Next, threadtasks are populated until they there are no more available.
    		 * Next, this main thread checks whether the threadtask that is due chronologically is
    		 * done. If it is, the bitbuffer is written and the threadtask memory reused for the next
    		 * frame. If it is not done, the main thread checks whether there is enough work left in the
    		 * queue. If there is a lot of work left, the main thread starts on some of it too.
    		 * If not a lot of work is left, the main thread goes to sleep until the frame due first is
    		 * finished.
    		 *
    		 * - encoder->private_->next_thread is the number of the next thread to be created or, when
    		 *    the required number of threads is created, the next threadtask to be populated,
    		 *    or, when all threadtasks have been populated once, the next threadtask that needs
    		 *    to finish and thus reused.
    		 * - encoder->private_->next_threadtask is the number of the next threadtask that a thread
    		 *    can start work on.
    		 *
    		 * So, in effect, next_thread is (after startup) a pointer considering the chronological
    		 * order, so input/output isn't shuffled. next_threadtask is a pointer to the next task that
    		 * hasn't been picked up by a thread yet. This distinction enables threads to work on frames
    		 * in a non-chronological order
    		 *
    		 * encoder->protected_->num_threads is the max number of threads that can be spawned
    		 * encoder->private_->num_created_threads is the number of threads that has been spawned
    		 * encoder->private_->num_threadtasks keeps track of how many threadtasks are available
    		 * encoder->private_->num_started_threadtasks keeps track of how many threadtasks have been populated
    		 *
    		 * NOTE: thread no. 0 and threadtask no. 0 are reserved for non-threaded operations, so next_thread
    		 * and next_threadtask start at 1
    		 */
    		if(encoder->private_->num_created_threads < encoder->protected_->num_threads) {
    			/* Create a new thread */
    			pthread_create(&encoder->private_->thread[encoder->private_->next_thread],
    					NULL, process_frame_thread_, encoder);
    			encoder->private_->num_created_threads++;
    		}
    		else if(encoder->private_->num_started_threadtasks == encoder->private_->num_threadtasks) {
    			/* If the first task in the queue is still running, check whether there is enough work
    			 * left in the queue. If there is, start on some
    			 * First, check whether the mutex for the next due task is locked or free. If it is free (and thus acquired now) and
    			 * the task is done, proceed to the next bit (writing the bitbuffer). If it is either currently locked or not yet
    			 * processed, choose between starting on some work (if there is enough work in the queue) or waiting for the task
    			 * to finish. Either way, release the mutex first, so it doesn't get interlocked with the work queue mutex  */
    			int mutex_result = pthread_mutex_trylock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    			while(mutex_result || !encoder->private_->threadtask[encoder->private_->next_thread]->task_done) {
    				if(!mutex_result)
    					pthread_mutex_unlock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    
    				pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    				if(encoder->private_->num_available_threadtasks > (encoder->protected_->num_threads - 1)) {
    					FLAC__StreamEncoderThreadTask * task = NULL;
    					task = encoder->private_->threadtask[encoder->private_->next_threadtask];
    					encoder->private_->num_available_threadtasks--;
    					encoder->private_->next_threadtask++;
    					if(encoder->private_->next_threadtask == encoder->private_->num_threadtasks)
    						encoder->private_->next_threadtask = 1;
    					pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    					pthread_mutex_lock(&task->mutex_this_task);
    					process_frame_thread_inner_(encoder, task);
    					mutex_result = pthread_mutex_trylock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    				}
    				else {
    					pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    					pthread_mutex_lock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    					while(!encoder->private_->threadtask[encoder->private_->next_thread]->task_done)
    						pthread_cond_wait(&encoder->private_->threadtask[encoder->private_->next_thread]->cond_task_done,&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    					mutex_result = 0;
    				}
    			}
    			/* Task is finished, write bitbuffer */
    			if(!encoder->private_->threadtask[encoder->private_->next_thread]->returnvalue) {
    				pthread_mutex_unlock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    				return false;
    			}
    			if(!write_bitbuffer_(encoder, encoder->private_->threadtask[encoder->private_->next_thread], encoder->protected_->blocksize, is_last_block)) {
    				/* the above function sets the state for us in case of an error */
    				pthread_mutex_unlock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    				return false;
    			}
    			pthread_mutex_unlock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    		}
    		/* Copy input data for MD5 calculation */
    		if(encoder->protected_->do_md5) {
    			pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    			while(encoder->private_->md5_fifo.tail + encoder->protected_->blocksize > encoder->private_->md5_fifo.size) {
    				pthread_cond_wait(&encoder->private_->cond_md5_emptied,&encoder->private_->mutex_work_queue);
    			}
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    			pthread_mutex_lock(&encoder->private_->mutex_md5_fifo);
    			for(i = 0; i < encoder->protected_->channels; i++)
    				memcpy(encoder->private_->md5_fifo.data[i]+encoder->private_->md5_fifo.tail, encoder->private_->threadtask[0]->integer_signal[i], encoder->protected_->blocksize * sizeof(encoder->private_->threadtask[0]->integer_signal[i][0]));
    			pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    			encoder->private_->md5_fifo.tail += encoder->protected_->blocksize;
    			pthread_cond_signal(&encoder->private_->cond_work_available);
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    			pthread_mutex_unlock(&encoder->private_->mutex_md5_fifo);
    		}
    
    		/* Copy input data for frame creation */
    		pthread_mutex_lock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    		for(i = 0; i < encoder->protected_->channels; i++)
    			memcpy(encoder->private_->threadtask[encoder->private_->next_thread]->integer_signal[i], encoder->private_->threadtask[0]->integer_signal[i], encoder->protected_->blocksize * sizeof(encoder->private_->threadtask[0]->integer_signal[i][0]));
    
    		encoder->private_->threadtask[encoder->private_->next_thread]->current_frame_number = encoder->private_->current_frame_number;
    		pthread_mutex_unlock(&encoder->private_->threadtask[encoder->private_->next_thread]->mutex_this_task);
    
    		pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    		if(encoder->private_->num_started_threadtasks < encoder->private_->num_threadtasks)
    			encoder->private_->num_started_threadtasks++;
    		encoder->private_->num_available_threadtasks++;
    		encoder->private_->threadtask[encoder->private_->next_thread]->task_done = false;
    		pthread_cond_signal(&encoder->private_->cond_work_available);
    		pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    
    		encoder->private_->next_thread++;
    		if(encoder->private_->next_thread == encoder->private_->num_threadtasks)
    			encoder->private_->next_thread = 1;
    #else
    		FLAC__ASSERT(0);
    #endif
    	}
    
    	/*
    	 * Get ready for the next frame
    	 */
    	encoder->private_->current_sample_number = 0;
    	encoder->private_->current_frame_number++;
    	encoder->private_->streaminfo.data.stream_info.total_samples += (FLAC__uint64)encoder->protected_->blocksize;
    
    	return true;
    }
    
    #ifdef HAVE_PTHREAD
    void * process_frame_thread_(void * args) {
    	FLAC__StreamEncoder * encoder = args;
    	uint32_t channel;
    
    	pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    	encoder->private_->num_running_threads++;
    	pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    
    	while(1) {
    		pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    		if(encoder->private_->finish_work_threads) {
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    			return NULL;
    		}
    		/* The code below pauses and restarts threads if it is noticed threads are often put too sleep
    		 * because of a lack of work. This reduces overhead when too many threads are active. The
    		 * overcommited indicator is increased when no tasks are available, decreased when more tasks
    		 * are available then threads are running, and reset when a thread is woken up or put to sleep */
    		if(encoder->private_->num_available_threadtasks == 0)
    			encoder->private_->overcommitted_indicator++;
    		else if(encoder->private_->num_available_threadtasks > encoder->private_->num_running_threads)
    			encoder->private_->overcommitted_indicator--;
    		if(encoder->private_->overcommitted_indicator < -20) {
    			encoder->private_->overcommitted_indicator = 0;
    			pthread_cond_signal(&encoder->private_->cond_wake_up_thread);
    		}
    		else if(encoder->private_->overcommitted_indicator > 20 && encoder->private_->num_running_threads > 2) {
    			encoder->private_->overcommitted_indicator = 0;
    			encoder->private_->num_running_threads--;
    			pthread_cond_wait(&encoder->private_->cond_wake_up_thread, &encoder->private_->mutex_work_queue);
    			encoder->private_->num_running_threads++;
    		}
    		while(encoder->private_->num_available_threadtasks == 0 && (encoder->private_->md5_active || encoder->private_->md5_fifo.tail == 0)) {
    			if(encoder->private_->finish_work_threads) {
    				pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    				return NULL;
    			}
    			pthread_cond_wait(&encoder->private_->cond_work_available, &encoder->private_->mutex_work_queue);
    		}
    		if(encoder->protected_->do_md5 && !encoder->private_->md5_active && encoder->private_->md5_fifo.tail > 0) {
    			uint32_t length = 0;
    			encoder->private_->md5_active = true;
    			while(encoder->private_->md5_fifo.tail > 0) {
    				length = encoder->private_->md5_fifo.tail;
    				pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    				if(!FLAC__MD5Accumulate(&encoder->private_->md5context, (const FLAC__int32 * const *)encoder->private_->md5_fifo.data, encoder->protected_->channels, length, (encoder->protected_->bits_per_sample+7) / 8)) {
    					encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    					return NULL;
    				}
    				pthread_mutex_lock(&encoder->private_->mutex_md5_fifo);
    				for(channel = 0; channel < encoder->protected_->channels; channel++)
    					memmove(&encoder->private_->md5_fifo.data[channel][0], &encoder->private_->md5_fifo.data[channel][length], (encoder->private_->md5_fifo.tail-length) * sizeof(encoder->private_->md5_fifo.data[0][0]));
    				pthread_mutex_lock(&encoder->private_->mutex_work_queue);
    				encoder->private_->md5_fifo.tail -= length;
    				pthread_cond_signal(&encoder->private_->cond_md5_emptied);
    				pthread_mutex_unlock(&encoder->private_->mutex_md5_fifo);
    			}
    			encoder->private_->md5_active = false;
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    		}
    		else if(encoder->private_->num_available_threadtasks > 0) {
    			FLAC__StreamEncoderThreadTask * task = NULL;
    			task = encoder->private_->threadtask[encoder->private_->next_threadtask];
    			encoder->private_->num_available_threadtasks--;
    			encoder->private_->next_threadtask++;
    			if(encoder->private_->next_threadtask == encoder->private_->num_threadtasks)
    				encoder->private_->next_threadtask = 1;
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    			pthread_mutex_lock(&task->mutex_this_task);
    			if(!process_frame_thread_inner_(encoder, task))
    				return NULL;
    		}
    		else {
    			pthread_mutex_unlock(&encoder->private_->mutex_work_queue);
    		}
    	}
    }
    
    FLAC__bool process_frame_thread_inner_(FLAC__StreamEncoder * encoder, FLAC__StreamEncoderThreadTask * task) {
    	FLAC__bool ok = true;
    	FLAC__uint16 crc;
    
    	/*
    	 * Process the frame header and subframes into the frame bitbuffer
    	 */
    	if(ok && !process_subframes_(encoder, task)) {
    		/* the above function sets the state for us in case of an error */
    		ok = false;
    	}
    
    	/*
    	 * Zero-pad the frame to a byte_boundary
    	 */
    	if(ok && !FLAC__bitwriter_zero_pad_to_byte_boundary(task->frame)) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    		ok = false;
    	}
    
    	/*
    	 * CRC-16 the whole thing
    	 */
    	FLAC__ASSERT(!ok || FLAC__bitwriter_is_byte_aligned(task->frame));
    	if(
    		ok &&
    		(
    			!FLAC__bitwriter_get_write_crc16(task->frame, &crc) ||
    			!FLAC__bitwriter_write_raw_uint32(task->frame, crc, FLAC__FRAME_FOOTER_CRC_LEN)
    		)
    	) {
    		encoder->protected_->state = FLAC__STREAM_ENCODER_MEMORY_ALLOCATION_ERROR;
    		ok = false;
    	}
    	task->returnvalue = ok;
    	task->task_done = true;
    	pthread_cond_signal(&task->cond_task_done);
    	pthread_mutex_unlock(&task->mutex_this_task);
    	return true;
    }
    #endif
    
    FLAC__bool process_subframes_(FLAC__StreamEncoder *encoder, FLAC__StreamEncoderThreadTask * threadtask)
    {
    	FLAC__FrameHeader frame_header;
    	uint32_t channel, min_partition_order = encoder->protected_->min_residual_partition_order, max_partition_order;
    	FLAC__bool do_independent, do_mid_side, all_subframes_constant = true;
    
    	threadtask->disable_constant_subframes = encoder->private_->disable_constant_subframes;
    
    	/*
    	 * Calculate the min,max Rice partition orders
    	 */
    
    	max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize(encoder->protected_->blocksize);
    	max_partition_order = flac_min(max_partition_order, encoder->protected_->max_residual_partition_order);
    	min_partition_order = flac_min(min_partition_order, max_partition_order);
    
    	/*
    	 * Setup the frame
    	 */
    	frame_header.blocksize = encoder->protected_->blocksize;
    	frame_header.sample_rate = encoder->protected_->sample_rate;
    	frame_header.channels = encoder->protected_->channels;
    	frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT; /* the default unless the encoder determines otherwise */
    	frame_header.bits_per_sample = encoder->protected_->bits_per_sample;
    	frame_header.number_type = FLAC__FRAME_NUMBER_TYPE_FRAME_NUMBER;
    	frame_header.number.frame_number = threadtask->current_frame_number;
    
    	/*
    	 * Figure out what channel assignments to try
    	 */
    	if(encoder->protected_->do_mid_side_stereo) {
    		if(encoder->protected_->loose_mid_side_stereo) {
    			uint64_t sumAbsLR = 0, sumAbsMS = 0;
    			uint32_t i;
    			if(encoder->protected_->bits_per_sample < 25) {
    				for(i = 1; i < encoder->protected_->blocksize; i++) {
    					int32_t predictionLeft = threadtask->integer_signal[0][i] - threadtask->integer_signal[0][i-1];
    					int32_t predictionRight = threadtask->integer_signal[1][i] - threadtask->integer_signal[1][i-1];
    					sumAbsLR += abs(predictionLeft) + abs(predictionRight);
    					sumAbsMS += abs((predictionLeft + predictionRight) >> 1) + abs(predictionLeft - predictionRight);
    				}
    			}
    			else { /* bps 25 or higher */
    				for(i = 1; i < encoder->protected_->blocksize; i++) {
    					int64_t predictionLeft = (int64_t)threadtask->integer_signal[0][i] - (int64_t)threadtask->integer_signal[0][i-1];
    					int64_t predictionRight = (int64_t)threadtask->integer_signal[1][i] - (int64_t)threadtask->integer_signal[1][i-1];
    					sumAbsLR += local_abs64(predictionLeft) + local_abs64(predictionRight);
    					sumAbsMS += local_abs64((predictionLeft + predictionRight) >> 1) + local_abs64(predictionLeft - predictionRight);
    				}
    			}
    			if(sumAbsLR < sumAbsMS) {
    				do_independent = true;
    				do_mid_side = false;
    				frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT;
    			}
    			else {
    				do_independent = false;
    				do_mid_side = true;
    				frame_header.channel_assignment = FLAC__CHANNEL_ASSIGNMENT_MID_SIDE;
    			}
    		}
    		else {
    			do_independent = true;
    			do_mid_side = true;
    		}
    	}
    	else {
    		do_independent = true;
    		do_mid_side = false;
    	}
    
    	FLAC__ASSERT(do_independent || do_mid_side);
    
    	/*
    	 * Prepare mid-side signals if applicable
    	 */
    	if(do_mid_side) {
    		uint32_t i;
    		FLAC__ASSERT(encoder->protected_->channels == 2);
    		if(encoder->protected_->bits_per_sample < 32)
    			for(i = 0; i < encoder->protected_->blocksize; i++) {
    				threadtask->integer_signal_mid_side[1][i] = threadtask->integer_signal[0][i] - threadtask->integer_signal[1][i];
    				threadtask->integer_signal_mid_side[0][i] = (threadtask->integer_signal[0][i] + threadtask->integer_signal[1][i]) >> 1; /* NOTE: not the same as 'mid = (signal[0][j] + signal[1][j]) / 2' ! */
    			}
    		else
    			for(i = 0; i <= encoder->protected_->blocksize; i++) {
    				threadtask->integer_signal_33bit_side[i] = (FLAC__int64)threadtask->integer_signal[0][i] - (FLAC__int64)threadtask->integer_signal[1][i];
    				threadtask->integer_signal_mid_side[0][i] = ((FLAC__int64)threadtask->integer_signal[0][i] + (FLAC__int64)threadtask->integer_signal[1][i]) >> 1; /* NOTE: not the same as 'mid = (signal[0][j] + signal[1][j]) / 2' ! */
    			}
    	}
    
    
    	/*
    	 * Check for wasted bits; set effective bps for each subframe
    	 */
    	if(do_independent) {
    		for(channel = 0; channel < encoder->protected_->channels; channel++) {
    			uint32_t w = get_wasted_bits_(threadtask->integer_signal[channel], encoder->protected_->blocksize);
    			if (w > encoder->protected_->bits_per_sample) {
    				w = encoder->protected_->bits_per_sample;
    			}
    			threadtask->subframe_workspace[channel][0].wasted_bits = threadtask->subframe_workspace[channel][1].wasted_bits = w;
    			threadtask->subframe_bps[channel] = encoder->protected_->bits_per_sample - w;
    		}
    	}
    	if(do_mid_side) {
    		FLAC__ASSERT(encoder->protected_->channels == 2);
    		for(channel = 0; channel < 2; channel++) {
    			uint32_t w;
    			if(encoder->protected_->bits_per_sample < 32 || channel == 0)
    				w = get_wasted_bits_(threadtask->integer_signal_mid_side[channel], encoder->protected_->blocksize);
    			else
    				w = get_wasted_bits_wide_(threadtask->integer_signal_33bit_side, threadtask->integer_signal_mid_side[channel], encoder->protected_->blocksize);
    
    			if (w > encoder->protected_->bits_per_sample) {
    				w = encoder->protected_->bits_per_sample;
    			}
    			threadtask->subframe_workspace_mid_side[channel][0].wasted_bits = threadtask->subframe_workspace_mid_side[channel][1].wasted_bits = w;
    			threadtask->subframe_bps_mid_side[channel] = encoder->protected_->bits_per_sample - w + (channel==0? 0:1);
    		}
    	}
    
    	/*
    	 * First do a normal encoding pass of each independent channel
    	 */
    	if(do_independent) {
    		for(channel = 0; channel < encoder->protected_->channels; channel++) {
    			if(encoder->protected_->limit_min_bitrate && all_subframes_constant && (channel + 1) == encoder->protected_->channels){
    				/* This frame contains only constant subframes at this point.
    				 * To prevent the frame from becoming too small, make sure
    				 * the last subframe isn't constant */
    				threadtask->disable_constant_subframes = true;
    			}
    			if(!
    				process_subframe_(
    					encoder,
    					threadtask,
    					min_partition_order,
    					max_partition_order,
    					&frame_header,
    					threadtask->subframe_bps[channel],
    					threadtask->integer_signal[channel],
    					threadtask->subframe_workspace_ptr[channel],
    					threadtask->partitioned_rice_contents_workspace_ptr[channel],
    					threadtask->residual_workspace[channel],
    					threadtask->best_subframe+channel,
    					threadtask->best_subframe_bits+channel
    				)
    			)
    				return false;
    			if(threadtask->subframe_workspace[channel][threadtask->best_subframe[channel]].type != FLAC__SUBFRAME_TYPE_CONSTANT)
    				all_subframes_constant = false;
    		}
    	}
    
    	/*
    	 * Now do mid and side channels if requested
    	 */
    	if(do_mid_side) {
    		FLAC__ASSERT(encoder->protected_->channels == 2);
    
    		for(channel = 0; channel < 2; channel++) {
    			void *integer_signal_;
    			if(threadtask->subframe_bps_mid_side[channel] <= 32)
    				integer_signal_ = threadtask->integer_signal_mid_side[channel];
    			else
    				integer_signal_ = threadtask->integer_signal_33bit_side;
    			if(!
    				process_subframe_(
    					encoder,
    					threadtask,
    					min_partition_order,
    					max_partition_order,
    					&frame_header,
    					threadtask->subframe_bps_mid_side[channel],
    					integer_signal_,
    					threadtask->subframe_workspace_ptr_mid_side[channel],
    					threadtask->partitioned_rice_contents_workspace_ptr_mid_side[channel],
    					threadtask->residual_workspace_mid_side[channel],
    					threadtask->best_subframe_mid_side+channel,
    					threadtask->best_subframe_bits_mid_side+channel
    				)
    			)
    				return false;
    		}
    	}
    
    	/*
    	 * Compose the frame bitbuffer
    	 */
    	if((do_independent && do_mid_side) || encoder->protected_->loose_mid_side_stereo) {
    		uint32_t left_bps = 0, right_bps = 0; /* initialized only to prevent superfluous compiler warning */
    		FLAC__Subframe *left_subframe = 0, *right_subframe = 0; /* initialized only to prevent superfluous compiler warning */
    		FLAC__ChannelAssignment channel_assignment;
    
    		FLAC__ASSERT(encoder->protected_->channels == 2);
    
    		if(!encoder->protected_->loose_mid_side_stereo) {
    			uint32_t bits[4]; /* WATCHOUT - indexed by FLAC__ChannelAssignment */
    			uint32_t min_bits;
    			int ca;
    
    			FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT == 0);
    			FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE   == 1);
    			FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE  == 2);
    			FLAC__ASSERT(FLAC__CHANNEL_ASSIGNMENT_MID_SIDE    == 3);
    
    			/* We have to figure out which channel assignent results in the smallest frame */
    			bits[FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT] = threadtask->best_subframe_bits         [0] + threadtask->best_subframe_bits         [1];
    			bits[FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE  ] = threadtask->best_subframe_bits         [0] + threadtask->best_subframe_bits_mid_side[1];
    			bits[FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE ] = threadtask->best_subframe_bits         [1] + threadtask->best_subframe_bits_mid_side[1];
    			bits[FLAC__CHANNEL_ASSIGNMENT_MID_SIDE   ] = threadtask->best_subframe_bits_mid_side[0] + threadtask->best_subframe_bits_mid_side[1];
    
    			channel_assignment = FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT;
    			min_bits = bits[channel_assignment];
    
    			/* When doing loose mid-side stereo, ignore left-side
    			 * and right-side options */
    			for(ca = 1; ca <= 3; ca++) {
    				if(bits[ca] < min_bits) {
    					min_bits = bits[ca];
    					channel_assignment = (FLAC__ChannelAssignment)ca;
    				}
    			}
    			frame_header.channel_assignment = channel_assignment;
    		}
    
    		if(!FLAC__frame_add_header(&frame_header, threadtask->frame)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    			return false;
    		}
    
    		switch(frame_header.channel_assignment) {
    			case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
    				left_subframe  = &threadtask->subframe_workspace         [0][threadtask->best_subframe         [0]];
    				right_subframe = &threadtask->subframe_workspace         [1][threadtask->best_subframe         [1]];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
    				left_subframe  = &threadtask->subframe_workspace         [0][threadtask->best_subframe         [0]];
    				right_subframe = &threadtask->subframe_workspace_mid_side[1][threadtask->best_subframe_mid_side[1]];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
    				left_subframe  = &threadtask->subframe_workspace_mid_side[1][threadtask->best_subframe_mid_side[1]];
    				right_subframe = &threadtask->subframe_workspace         [1][threadtask->best_subframe         [1]];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
    				left_subframe  = &threadtask->subframe_workspace_mid_side[0][threadtask->best_subframe_mid_side[0]];
    				right_subframe = &threadtask->subframe_workspace_mid_side[1][threadtask->best_subframe_mid_side[1]];
    				break;
    			default:
    				FLAC__ASSERT(0);
    		}
    
    		switch(frame_header.channel_assignment) {
    			case FLAC__CHANNEL_ASSIGNMENT_INDEPENDENT:
    				left_bps  = threadtask->subframe_bps         [0];
    				right_bps = threadtask->subframe_bps         [1];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_LEFT_SIDE:
    				left_bps  = threadtask->subframe_bps         [0];
    				right_bps = threadtask->subframe_bps_mid_side[1];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_RIGHT_SIDE:
    				left_bps  = threadtask->subframe_bps_mid_side[1];
    				right_bps = threadtask->subframe_bps         [1];
    				break;
    			case FLAC__CHANNEL_ASSIGNMENT_MID_SIDE:
    				left_bps  = threadtask->subframe_bps_mid_side[0];
    				right_bps = threadtask->subframe_bps_mid_side[1];
    				break;
    			default:
    				FLAC__ASSERT(0);
    		}
    
    		/* note that encoder_add_subframe_ sets the state for us in case of an error */
    		if(!add_subframe_(encoder, frame_header.blocksize, left_bps , left_subframe , threadtask->frame))
    			return false;
    		if(!add_subframe_(encoder, frame_header.blocksize, right_bps, right_subframe, threadtask->frame))
    			return false;
    	}
    	else {
    		FLAC__ASSERT(do_independent);
    		if(!FLAC__frame_add_header(&frame_header, threadtask->frame)) {
    			encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    			return false;
    		}
    
    		for(channel = 0; channel < encoder->protected_->channels; channel++) {
    			if(!add_subframe_(encoder, frame_header.blocksize, threadtask->subframe_bps[channel], &threadtask->subframe_workspace[channel][threadtask->best_subframe[channel]], threadtask->frame)) {
    				/* the above function sets the state for us in case of an error */
    				return false;
    			}
    		}
    	}
    
    	return true;
    }
    
    FLAC__bool process_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	const FLAC__FrameHeader *frame_header,
    	uint32_t subframe_bps,
    	const void *integer_signal,
    	FLAC__Subframe *subframe[2],
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents[2],
    	FLAC__int32 *residual[2],
    	uint32_t *best_subframe,
    	uint32_t *best_bits
    )
    {
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	float fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
    #else
    	FLAC__fixedpoint fixed_residual_bits_per_sample[FLAC__MAX_FIXED_ORDER+1];
    #endif
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    	double lpc_residual_bits_per_sample;
    	apply_apodization_state_struct apply_apodization_state;
    	double lpc_error[FLAC__MAX_LPC_ORDER];
    	uint32_t min_lpc_order, max_lpc_order, lpc_order, guess_lpc_order;
    	uint32_t min_qlp_coeff_precision, max_qlp_coeff_precision, qlp_coeff_precision;
    #endif
    	uint32_t min_fixed_order, max_fixed_order, guess_fixed_order, fixed_order;
    	uint32_t _candidate_bits, _best_bits;
    	uint32_t _best_subframe;
    	/* only use RICE2 partitions if stream bps > 16 */
    	const uint32_t rice_parameter_limit = FLAC__stream_encoder_get_bits_per_sample(encoder) > 16? FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER : FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER;
    
    	FLAC__ASSERT(frame_header->blocksize > 0);
    
    	/* verbatim subframe is the baseline against which we measure other compressed subframes */
    	_best_subframe = 0;
    	if(encoder->private_->disable_verbatim_subframes && frame_header->blocksize >= FLAC__MAX_FIXED_ORDER)
    		_best_bits = UINT32_MAX;
    	else
    		_best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]);
    	*best_bits = _best_bits;
    
    	if(frame_header->blocksize > FLAC__MAX_FIXED_ORDER) {
    		uint32_t signal_is_constant = false;
    		/* The next formula determines when to use a 64-bit accumulator
    		 * for the error of a fixed predictor, and when a 32-bit one. As
    		 * the error of a 4th order predictor for a given sample is the
    		 * sum of 17 sample values (1+4+6+4+1) and there are blocksize -
    		 * order error values to be summed, the maximum total error is
    		 * maximum_sample_value * (blocksize - order) * 17. As ilog2(x)
    		 * calculates floor(2log(x)), the result must be 31 or lower
    		 */
    		if(subframe_bps < 28){
    			if(subframe_bps + FLAC__bitmath_ilog2((frame_header->blocksize-FLAC__MAX_FIXED_ORDER)*17) < 32)
    				guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor(((FLAC__int32 *)integer_signal)+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
    			else
    				guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor_wide(((FLAC__int32 *)integer_signal)+FLAC__MAX_FIXED_ORDER, frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
    		}
    		else
    			if(subframe_bps <= 32)
    				guess_fixed_order = encoder->private_->local_fixed_compute_best_predictor_limit_residual(((FLAC__int32 *)integer_signal+FLAC__MAX_FIXED_ORDER),frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
    			else
    				guess_fixed_order = FLAC__fixed_compute_best_predictor_limit_residual_33bit(((FLAC__int64 *)integer_signal+FLAC__MAX_FIXED_ORDER),frame_header->blocksize-FLAC__MAX_FIXED_ORDER, fixed_residual_bits_per_sample);
    
    		/* check for constant subframe */
    		if(
    			!threadtask->disable_constant_subframes &&
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    			fixed_residual_bits_per_sample[1] == 0.0
    #else
    			fixed_residual_bits_per_sample[1] == FLAC__FP_ZERO
    #endif
    		) {
    			/* the above means it's possible all samples are the same value; now double-check it: */
    			uint32_t i;
    			signal_is_constant = true;
    			if(subframe_bps <= 32){
    				const FLAC__int32 *integer_signal_ = integer_signal;
    				for(i = 1; i < frame_header->blocksize; i++) {
    					if(integer_signal_[0] != integer_signal_[i]) {
    						signal_is_constant = false;
    						break;
    					}
    				}
    			}
    			else {
    				const FLAC__int64 *integer_signal_ = integer_signal;
    				for(i = 1; i < frame_header->blocksize; i++) {
    					if(integer_signal_[0] != integer_signal_[i]) {
    						signal_is_constant = false;
    						break;
    					}
    				}
    			}
    		}
    		if(signal_is_constant) {
    			if(subframe_bps <= 32)
    				_candidate_bits = evaluate_constant_subframe_(encoder, ((FLAC__int32 *)integer_signal)[0], frame_header->blocksize, subframe_bps, subframe[!_best_subframe]);
    			else
    				_candidate_bits = evaluate_constant_subframe_(encoder, ((FLAC__int64 *)integer_signal)[0], frame_header->blocksize, subframe_bps, subframe[!_best_subframe]);
    
    			if(_candidate_bits < _best_bits) {
    				_best_subframe = !_best_subframe;
    				_best_bits = _candidate_bits;
    			}
    		}
    		else {
    			if(!encoder->private_->disable_fixed_subframes || (encoder->protected_->max_lpc_order == 0 && _best_bits == UINT_MAX)) {
    				/* encode fixed */
    				if(encoder->protected_->do_exhaustive_model_search) {
    					min_fixed_order = 0;
    					max_fixed_order = FLAC__MAX_FIXED_ORDER;
    				}
    				else {
    					min_fixed_order = max_fixed_order = guess_fixed_order;
    				}
    				if(max_fixed_order >= frame_header->blocksize)
    					max_fixed_order = frame_header->blocksize - 1;
    				for(fixed_order = min_fixed_order; fixed_order <= max_fixed_order; fixed_order++) {
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    					if(fixed_residual_bits_per_sample[fixed_order] >= (float)subframe_bps)
    						continue; /* don't even try */
    #else
    					if(FLAC__fixedpoint_trunc(fixed_residual_bits_per_sample[fixed_order]) >= (int)subframe_bps)
    						continue; /* don't even try */
    #endif
    					_candidate_bits =
    						evaluate_fixed_subframe_(
    							encoder,
    							threadtask,
    							integer_signal,
    							residual[!_best_subframe],
    							threadtask->abs_residual_partition_sums,
    							threadtask->raw_bits_per_partition,
    							frame_header->blocksize,
    							subframe_bps,
    							fixed_order,
    							rice_parameter_limit,
    							min_partition_order,
    							max_partition_order,
    							encoder->protected_->do_escape_coding,
    							encoder->protected_->rice_parameter_search_dist,
    							subframe[!_best_subframe],
    							partitioned_rice_contents[!_best_subframe]
    						);
    					if(_candidate_bits < _best_bits) {
    						_best_subframe = !_best_subframe;
    						_best_bits = _candidate_bits;
    					}
    				}
    			}
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    			/* encode lpc */
    			if(encoder->protected_->max_lpc_order > 0) {
    				if(encoder->protected_->max_lpc_order >= frame_header->blocksize)
    					max_lpc_order = frame_header->blocksize-1;
    				else
    					max_lpc_order = encoder->protected_->max_lpc_order;
    				if(max_lpc_order > 0) {
    					apply_apodization_state.a = 0;
    					apply_apodization_state.b = 1;
    					apply_apodization_state.c = 0;
    					while (apply_apodization_state.a < encoder->protected_->num_apodizations) {
    						uint32_t max_lpc_order_this_apodization = max_lpc_order;
    
    						if(!apply_apodization_(encoder, threadtask, &apply_apodization_state,
    						                       frame_header->blocksize, lpc_error,
    						                       &max_lpc_order_this_apodization,
    						                       subframe_bps, integer_signal,
    						                       &guess_lpc_order))
    							/* If apply_apodization_ fails, try next apodization */
    							continue;
    
    						if(encoder->protected_->do_exhaustive_model_search) {
    							min_lpc_order = 1;
    						}
    						else {
    							min_lpc_order = max_lpc_order_this_apodization = guess_lpc_order;
    						}
    						for(lpc_order = min_lpc_order; lpc_order <= max_lpc_order_this_apodization; lpc_order++) {
    							lpc_residual_bits_per_sample = FLAC__lpc_compute_expected_bits_per_residual_sample(lpc_error[lpc_order-1], frame_header->blocksize-lpc_order);
    							if(lpc_residual_bits_per_sample >= (double)subframe_bps)
    								continue; /* don't even try */
    							if(encoder->protected_->do_qlp_coeff_prec_search) {
    								min_qlp_coeff_precision = FLAC__MIN_QLP_COEFF_PRECISION;
    								/* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps(+1bps for side channel) streams */
    								if(subframe_bps <= 17) {
    									max_qlp_coeff_precision = flac_min(32 - subframe_bps - FLAC__bitmath_ilog2(lpc_order), FLAC__MAX_QLP_COEFF_PRECISION);
    									max_qlp_coeff_precision = flac_max(max_qlp_coeff_precision, min_qlp_coeff_precision);
    								}
    								else
    									max_qlp_coeff_precision = FLAC__MAX_QLP_COEFF_PRECISION;
    							}
    							else {
    								min_qlp_coeff_precision = max_qlp_coeff_precision = encoder->protected_->qlp_coeff_precision;
    							}
    							for(qlp_coeff_precision = min_qlp_coeff_precision; qlp_coeff_precision <= max_qlp_coeff_precision; qlp_coeff_precision++) {
    								_candidate_bits =
    									evaluate_lpc_subframe_(
    										encoder,
    										threadtask,
    										integer_signal,
    										residual[!_best_subframe],
    										threadtask->abs_residual_partition_sums,
    										threadtask->raw_bits_per_partition,
    										threadtask->lp_coeff[lpc_order-1],
    										frame_header->blocksize,
    										subframe_bps,
    										lpc_order,
    										qlp_coeff_precision,
    										rice_parameter_limit,
    										min_partition_order,
    										max_partition_order,
    										encoder->protected_->do_escape_coding,
    										encoder->protected_->rice_parameter_search_dist,
    										subframe[!_best_subframe],
    										partitioned_rice_contents[!_best_subframe]
    									);
    								if(_candidate_bits > 0) { /* if == 0, there was a problem quantizing the lpcoeffs */
    									if(_candidate_bits < _best_bits) {
    										_best_subframe = !_best_subframe;
    										_best_bits = _candidate_bits;
    									}
    								}
    							}
    						}
    					}
    				}
    			}
    #endif /* !defined FLAC__INTEGER_ONLY_LIBRARY */
    		}
    	}
    
    	/* under rare circumstances this can happen when all but lpc subframe types are disabled: */
    	if(_best_bits == UINT32_MAX) {
    		FLAC__ASSERT(_best_subframe == 0);
    		_best_bits = evaluate_verbatim_subframe_(encoder, integer_signal, frame_header->blocksize, subframe_bps, subframe[_best_subframe]);
    	}
    
    	*best_subframe = _best_subframe;
    	*best_bits = _best_bits;
    
    	return true;
    }
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    static inline void set_next_subdivide_tukey(FLAC__int32 parts, uint32_t * apodizations, uint32_t * current_depth, uint32_t * current_part){
    	// current_part is interleaved: even are partial, odd are punchout
    	if(*current_depth == 2){
    		// For depth 2, we only do partial, no punchout as that is almost redundant
    		if(*current_part == 0){
    			*current_part = 2;
    		}else{ /* *current_path == 2 */
    			*current_part = 0;
    			(*current_depth)++;
    		}
    	}else if((*current_part) < (2*(*current_depth)-1)){
    		(*current_part)++;
    	}else{ /* (*current_part) >= (2*(*current_depth)-1) */
    		*current_part = 0;
    		(*current_depth)++;
    	}
    
    	/* Now check if we are done with this SUBDIVIDE_TUKEY apodization */
    	if(*current_depth > (uint32_t) parts){
    		(*apodizations)++;
    		*current_depth = 1;
    		*current_part = 0;
    	}
    }
    
    FLAC__bool apply_apodization_(FLAC__StreamEncoder *encoder,
                            FLAC__StreamEncoderThreadTask *threadtask,
                            apply_apodization_state_struct *apply_apodization_state,
                            uint32_t blocksize,
                            double *lpc_error,
                            uint32_t *max_lpc_order_this_apodization,
                            uint32_t subframe_bps,
                            const void *integer_signal,
                            uint32_t *guess_lpc_order)
    {
    	apply_apodization_state->current_apodization = &encoder->protected_->apodizations[apply_apodization_state->a];
    
    	if(apply_apodization_state->b == 1) {
    		/* window full subblock */
    		if(subframe_bps <= 32)
    			FLAC__lpc_window_data(integer_signal, encoder->private_->window[apply_apodization_state->a], threadtask->windowed_signal, blocksize);
    		else
    			FLAC__lpc_window_data_wide(integer_signal, encoder->private_->window[apply_apodization_state->a], threadtask->windowed_signal, blocksize);
    		encoder->private_->local_lpc_compute_autocorrelation(threadtask->windowed_signal, blocksize, (*max_lpc_order_this_apodization)+1, apply_apodization_state->autoc);
    		if(apply_apodization_state->current_apodization->type == FLAC__APODIZATION_SUBDIVIDE_TUKEY){
    			uint32_t i;
    			for(i = 0; i < *max_lpc_order_this_apodization; i++)
    			memcpy(apply_apodization_state->autoc_root, apply_apodization_state->autoc, *max_lpc_order_this_apodization*sizeof(apply_apodization_state->autoc[0]));
    
    			(apply_apodization_state->b)++;
    		}else{
    			(apply_apodization_state->a)++;
    		}
    	}
    	else {
    		/* window part of subblock */
    		if(blocksize/apply_apodization_state->b <= FLAC__MAX_LPC_ORDER) {
    			/* intrinsics autocorrelation routines do not all handle cases in which lag might be
    			 * larger than data_len, and some routines round lag up to the nearest multiple of 4
    			 * As little gain is expected from using LPC on part of a signal as small as 32 samples
    			 * and to enable widening this rounding up to larger values in the future, windowing
    			 * parts smaller than or equal to FLAC__MAX_LPC_ORDER (which is 32) samples is not supported */
    			set_next_subdivide_tukey(apply_apodization_state->current_apodization->parameters.subdivide_tukey.parts, &apply_apodization_state->a, &apply_apodization_state->b, &apply_apodization_state->c);
    			return false;
    		}
    		if(!(apply_apodization_state->c % 2)) {
    			/* on even c, evaluate the (c/2)th partial window of size blocksize/b  */
    			if(subframe_bps <= 32)
    				FLAC__lpc_window_data_partial(integer_signal, encoder->private_->window[apply_apodization_state->a], threadtask->windowed_signal, blocksize, blocksize/apply_apodization_state->b/2, (apply_apodization_state->c/2*blocksize)/apply_apodization_state->b);
    			else
    				FLAC__lpc_window_data_partial_wide(integer_signal, encoder->private_->window[apply_apodization_state->a], threadtask->windowed_signal, blocksize, blocksize/apply_apodization_state->b/2, (apply_apodization_state->c/2*blocksize)/apply_apodization_state->b);
    			encoder->private_->local_lpc_compute_autocorrelation(threadtask->windowed_signal, blocksize/apply_apodization_state->b, (*max_lpc_order_this_apodization)+1, apply_apodization_state->autoc);
    		}
    		else {
    			/* on uneven c, evaluate the root window (over the whole block) minus the previous partial window
    			 * similar to tukey_punchout apodization but more efficient */
    			uint32_t i;
    			for(i = 0; i < *max_lpc_order_this_apodization; i++)
    				apply_apodization_state->autoc[i] = apply_apodization_state->autoc_root[i] - apply_apodization_state->autoc[i];
    		}
    		/* Next function sets a, b and c appropriate for next iteration */
    		set_next_subdivide_tukey(apply_apodization_state->current_apodization->parameters.subdivide_tukey.parts, &apply_apodization_state->a, &apply_apodization_state->b, &apply_apodization_state->c);
    	}
    
    	if(apply_apodization_state->autoc[0] == 0.0) /* Signal seems to be constant, so we can't do lp. Constant detection is probably disabled */
    		return false;
    	FLAC__lpc_compute_lp_coefficients(apply_apodization_state->autoc, max_lpc_order_this_apodization, threadtask->lp_coeff, lpc_error);
    	*guess_lpc_order =
    	FLAC__lpc_compute_best_order(
    		lpc_error,
    		*max_lpc_order_this_apodization,
    		blocksize,
    		subframe_bps + (
    			encoder->protected_->do_qlp_coeff_prec_search?
    				FLAC__MIN_QLP_COEFF_PRECISION : /* have to guess; use the min possible size to avoid accidentally favoring lower orders */
    				encoder->protected_->qlp_coeff_precision
    		)
    	);
    	return true;
    }
    #endif
    
    FLAC__bool add_subframe_(
    	FLAC__StreamEncoder *encoder,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	const FLAC__Subframe *subframe,
    	FLAC__BitWriter *frame
    )
    {
    	switch(subframe->type) {
    		case FLAC__SUBFRAME_TYPE_CONSTANT:
    			if(!FLAC__subframe_add_constant(&(subframe->data.constant), subframe_bps, subframe->wasted_bits, frame)) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    				return false;
    			}
    			break;
    		case FLAC__SUBFRAME_TYPE_FIXED:
    			if(!FLAC__subframe_add_fixed(&(subframe->data.fixed), blocksize - subframe->data.fixed.order, subframe_bps, subframe->wasted_bits, frame)) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    				return false;
    			}
    			break;
    		case FLAC__SUBFRAME_TYPE_LPC:
    			if(!FLAC__subframe_add_lpc(&(subframe->data.lpc), blocksize - subframe->data.lpc.order, subframe_bps, subframe->wasted_bits, frame)) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    				return false;
    			}
    			break;
    		case FLAC__SUBFRAME_TYPE_VERBATIM:
    			if(!FLAC__subframe_add_verbatim(&(subframe->data.verbatim), blocksize, subframe_bps, subframe->wasted_bits, frame)) {
    				encoder->protected_->state = FLAC__STREAM_ENCODER_FRAMING_ERROR;
    				return false;
    			}
    			break;
    		default:
    			FLAC__ASSERT(0);
    	}
    
    	return true;
    }
    
    #define SPOTCHECK_ESTIMATE 0
    #if SPOTCHECK_ESTIMATE
    static void spotcheck_subframe_estimate_(
    	FLAC__StreamEncoder *encoder,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	const FLAC__Subframe *subframe,
    	uint32_t estimate
    )
    {
    	FLAC__bool ret;
    	FLAC__BitWriter *frame = FLAC__bitwriter_new();
    	if(frame == 0) {
    		flac_fprintf(stderr, "EST: can't allocate frame\n");
    		return;
    	}
    	if(!FLAC__bitwriter_init(frame)) {
    		flac_fprintf(stderr, "EST: can't init frame\n");
    		return;
    	}
    	ret = add_subframe_(encoder, blocksize, subframe_bps, subframe, frame);
    	FLAC__ASSERT(ret);
    	{
    		const uint32_t actual = FLAC__bitwriter_get_input_bits_unconsumed(frame);
    		if(estimate != actual)
    			flac_fprintf(stderr, "EST: bad, frame#%u sub#%%d type=%8s est=%u, actual=%u, delta=%d\n", encoder->private_->current_frame_number, FLAC__SubframeTypeString[subframe->type], estimate, actual, (int)actual-(int)estimate);
    	}
    	FLAC__bitwriter_delete(frame);
    }
    #endif
    
    uint32_t evaluate_constant_subframe_(
    	FLAC__StreamEncoder *encoder,
    	const FLAC__int64 signal,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	FLAC__Subframe *subframe
    )
    {
    	uint32_t estimate;
    	subframe->type = FLAC__SUBFRAME_TYPE_CONSTANT;
    	subframe->data.constant.value = signal;
    
    	estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + subframe_bps;
    
    #if SPOTCHECK_ESTIMATE
    	spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate);
    #else
    	(void)encoder, (void)blocksize;
    #endif
    
    	return estimate;
    }
    
    uint32_t evaluate_fixed_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const void *signal,
    	FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	uint32_t order,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__Subframe *subframe,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
    )
    {
    	uint32_t i, residual_bits, estimate;
    	const uint32_t residual_samples = blocksize - order;
    
    	if((subframe_bps + order) <= 32)
    		FLAC__fixed_compute_residual(((FLAC__int32 *)signal)+order, residual_samples, order, residual);
    	else if(subframe_bps <= 32)
    		FLAC__fixed_compute_residual_wide(((FLAC__int32 *)signal)+order, residual_samples, order, residual);
    	else
    		FLAC__fixed_compute_residual_wide_33bit(((FLAC__int64 *)signal)+order, residual_samples, order, residual);
    
    	subframe->type = FLAC__SUBFRAME_TYPE_FIXED;
    
    	subframe->data.fixed.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
    	subframe->data.fixed.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
    	subframe->data.fixed.residual = residual;
    
    	residual_bits =
    		find_best_partition_order_(
    			encoder->private_,
    			threadtask,
    			residual,
    			abs_residual_partition_sums,
    			raw_bits_per_partition,
    			residual_samples,
    			order,
    			rice_parameter_limit,
    			min_partition_order,
    			max_partition_order,
    			subframe_bps,
    			do_escape_coding,
    			rice_parameter_search_dist,
    			&subframe->data.fixed.entropy_coding_method
    		);
    
    	subframe->data.fixed.order = order;
    	if(subframe_bps <= 32)
    		for(i = 0; i < order; i++)
    			subframe->data.fixed.warmup[i] = ((FLAC__int32 *)signal)[i];
    	else
    		for(i = 0; i < order; i++)
    			subframe->data.fixed.warmup[i] = ((FLAC__int64 *)signal)[i];
    
    	estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (order * subframe_bps);
    	if(residual_bits < UINT32_MAX - estimate) // To make sure estimate doesn't overflow
    		estimate += residual_bits;
    	else
    		estimate = UINT32_MAX;
    
    #if SPOTCHECK_ESTIMATE
    	spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate);
    #endif
    
    	return estimate;
    }
    
    #ifndef FLAC__INTEGER_ONLY_LIBRARY
    uint32_t evaluate_lpc_subframe_(
    	FLAC__StreamEncoder *encoder,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const void *signal,
    	FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	const FLAC__real lp_coeff[],
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	uint32_t order,
    	uint32_t qlp_coeff_precision,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__Subframe *subframe,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents
    )
    {
    	FLAC__int32 qlp_coeff[FLAC__MAX_LPC_ORDER]; /* WATCHOUT: the size is important; some x86 intrinsic routines need more than lpc order elements */
    	uint32_t i, residual_bits, estimate;
    	int quantization, ret;
    	const uint32_t residual_samples = blocksize - order;
    
    	/* try to keep qlp coeff precision such that only 32-bit math is required for decode of <=16bps(+1bps for side channel) streams */
    	if(subframe_bps <= 17) {
    		FLAC__ASSERT(order > 0);
    		FLAC__ASSERT(order <= FLAC__MAX_LPC_ORDER);
    		qlp_coeff_precision = flac_min(qlp_coeff_precision, 32 - subframe_bps - FLAC__bitmath_ilog2(order));
    	}
    
    	ret = FLAC__lpc_quantize_coefficients(lp_coeff, order, qlp_coeff_precision, qlp_coeff, &quantization);
    	if(ret != 0)
    		return 0; /* this is a hack to indicate to the caller that we can't do lp at this order on this subframe */
    
    	if(FLAC__lpc_max_residual_bps(subframe_bps, qlp_coeff, order, quantization) > 32) {
    		if(subframe_bps <= 32){
    			if(!FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual))
    				return 0;
    		}
    		else
    			if(!FLAC__lpc_compute_residual_from_qlp_coefficients_limit_residual_33bit(((FLAC__int64 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual))
    				return 0;
    	}
    	else
    		if(FLAC__lpc_max_prediction_before_shift_bps(subframe_bps, qlp_coeff, order) <= 32)
    			if(subframe_bps <= 16 && qlp_coeff_precision <= 16)
    				encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_16bit(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual);
    			else
    				encoder->private_->local_lpc_compute_residual_from_qlp_coefficients(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual);
    		else
    			encoder->private_->local_lpc_compute_residual_from_qlp_coefficients_64bit(((FLAC__int32 *)signal)+order, residual_samples, qlp_coeff, order, quantization, residual);
    
    	subframe->type = FLAC__SUBFRAME_TYPE_LPC;
    
    	subframe->data.lpc.entropy_coding_method.type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE;
    	subframe->data.lpc.entropy_coding_method.data.partitioned_rice.contents = partitioned_rice_contents;
    	subframe->data.lpc.residual = residual;
    
    	residual_bits =
    		find_best_partition_order_(
    			encoder->private_,
    			threadtask,
    			residual,
    			abs_residual_partition_sums,
    			raw_bits_per_partition,
    			residual_samples,
    			order,
    			rice_parameter_limit,
    			min_partition_order,
    			max_partition_order,
    			subframe_bps,
    			do_escape_coding,
    			rice_parameter_search_dist,
    			&subframe->data.lpc.entropy_coding_method
    		);
    
    	subframe->data.lpc.order = order;
    	subframe->data.lpc.qlp_coeff_precision = qlp_coeff_precision;
    	subframe->data.lpc.quantization_level = quantization;
    	memcpy(subframe->data.lpc.qlp_coeff, qlp_coeff, sizeof(FLAC__int32)*FLAC__MAX_LPC_ORDER);
    	if(subframe_bps <= 32)
    		for(i = 0; i < order; i++)
    			subframe->data.lpc.warmup[i] = ((FLAC__int32 *)signal)[i];
    	else
    		for(i = 0; i < order; i++)
    			subframe->data.lpc.warmup[i] = ((FLAC__int64 *)signal)[i];
    
    
    	estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + FLAC__SUBFRAME_LPC_QLP_COEFF_PRECISION_LEN + FLAC__SUBFRAME_LPC_QLP_SHIFT_LEN + (order * (qlp_coeff_precision + subframe_bps));
    	if(residual_bits < UINT32_MAX - estimate) // To make sure estimate doesn't overflow
    		estimate += residual_bits;
    	else
    		estimate = UINT32_MAX;
    
    #if SPOTCHECK_ESTIMATE
    	spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate);
    #endif
    
    	return estimate;
    }
    #endif
    
    uint32_t evaluate_verbatim_subframe_(
    	FLAC__StreamEncoder *encoder,
    	const void *signal,
    	uint32_t blocksize,
    	uint32_t subframe_bps,
    	FLAC__Subframe *subframe
    )
    {
    	uint32_t estimate;
    
    	subframe->type = FLAC__SUBFRAME_TYPE_VERBATIM;
    
    	if(subframe_bps <= 32){
    		subframe->data.verbatim.data_type = FLAC__VERBATIM_SUBFRAME_DATA_TYPE_INT32;
    		subframe->data.verbatim.data.int32 = signal;
    	}
    	else {
    		subframe->data.verbatim.data_type = FLAC__VERBATIM_SUBFRAME_DATA_TYPE_INT64;
    		subframe->data.verbatim.data.int64 = signal;
    	}
    
    	estimate = FLAC__SUBFRAME_ZERO_PAD_LEN + FLAC__SUBFRAME_TYPE_LEN + FLAC__SUBFRAME_WASTED_BITS_FLAG_LEN + subframe->wasted_bits + (blocksize * subframe_bps);
    
    #if SPOTCHECK_ESTIMATE
    	spotcheck_subframe_estimate_(encoder, blocksize, subframe_bps, subframe, estimate);
    #else
    	(void)encoder;
    #endif
    
    	return estimate;
    }
    
    uint32_t find_best_partition_order_(
    	FLAC__StreamEncoderPrivate *private_,
    	FLAC__StreamEncoderThreadTask *threadtask,
    	const FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t rice_parameter_limit,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	uint32_t bps,
    	FLAC__bool do_escape_coding,
    	uint32_t rice_parameter_search_dist,
    	FLAC__EntropyCodingMethod *best_ecm
    )
    {
    	uint32_t residual_bits, best_residual_bits = 0;
    	uint32_t best_parameters_index = 0;
    	uint32_t best_partition_order = 0;
    	const uint32_t blocksize = residual_samples + predictor_order;
    
    	max_partition_order = FLAC__format_get_max_rice_partition_order_from_blocksize_limited_max_and_predictor_order(max_partition_order, blocksize, predictor_order);
    	min_partition_order = flac_min(min_partition_order, max_partition_order);
    
    	private_->local_precompute_partition_info_sums(residual, abs_residual_partition_sums, residual_samples, predictor_order, min_partition_order, max_partition_order, bps);
    
    	if(do_escape_coding)
    		precompute_partition_info_escapes_(residual, raw_bits_per_partition, residual_samples, predictor_order, min_partition_order, max_partition_order);
    
    	{
    		int partition_order;
    		uint32_t sum;
    
    		for(partition_order = (int)max_partition_order, sum = 0; partition_order >= (int)min_partition_order; partition_order--) {
    			FLAC__ASSERT(do_escape_coding != /* XOR */ (raw_bits_per_partition == NULL));
    			if(!
    				set_partitioned_rice_(
    #ifdef EXACT_RICE_BITS_CALCULATION
    					residual,
    #endif
    					abs_residual_partition_sums+sum,
    					do_escape_coding ? raw_bits_per_partition+sum : NULL,
    					residual_samples,
    					predictor_order,
    					rice_parameter_limit,
    					rice_parameter_search_dist,
    					(uint32_t)partition_order,
    					do_escape_coding,
    					&threadtask->partitioned_rice_contents_extra[!best_parameters_index],
    					&residual_bits
    				)
    			)
    			{
    				FLAC__ASSERT(best_residual_bits != 0);
    				break;
    			}
    			sum += 1u << partition_order;
    			if(best_residual_bits == 0 || residual_bits < best_residual_bits) {
    				best_residual_bits = residual_bits;
    				best_parameters_index = !best_parameters_index;
    				best_partition_order = partition_order;
    			}
    		}
    	}
    
    	best_ecm->data.partitioned_rice.order = best_partition_order;
    
    	{
    		/*
    		 * We are allowed to de-const the pointer based on our special
    		 * knowledge; it is const to the outside world.
    		 */
    		FLAC__EntropyCodingMethod_PartitionedRiceContents* prc = (FLAC__EntropyCodingMethod_PartitionedRiceContents*)best_ecm->data.partitioned_rice.contents;
    		uint32_t partition;
    
    		/* save best parameters and raw_bits */
    		memcpy(prc->parameters, threadtask->partitioned_rice_contents_extra[best_parameters_index].parameters, (uint32_t)sizeof(uint32_t)*(1<<(best_partition_order)));
    		if(do_escape_coding)
    			memcpy(prc->raw_bits, threadtask->partitioned_rice_contents_extra[best_parameters_index].raw_bits, (uint32_t)sizeof(uint32_t)*(1<<(best_partition_order)));
    		/*
    		 * Now need to check if the type should be changed to
    		 * FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2 based on the
    		 * size of the rice parameters.
    		 */
    		for(partition = 0; partition < (1u<<best_partition_order); partition++) {
    			if(prc->parameters[partition] >= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ESCAPE_PARAMETER) {
    				best_ecm->type = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2;
    				break;
    			}
    		}
    	}
    
    	return best_residual_bits;
    }
    
    void precompute_partition_info_sums_(
    	const FLAC__int32 residual[],
    	FLAC__uint64 abs_residual_partition_sums[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order,
    	uint32_t bps
    )
    {
    	const uint32_t default_partition_samples = (residual_samples + predictor_order) >> max_partition_order;
    	uint32_t partitions = 1u << max_partition_order;
    
    	FLAC__ASSERT(default_partition_samples > predictor_order);
    
    	/* first do max_partition_order */
    	{
    		const uint32_t threshold = 32 - FLAC__bitmath_ilog2(default_partition_samples);
    		uint32_t partition, residual_sample, end = (uint32_t)(-(int)predictor_order);
    		/* WATCHOUT: "bps + FLAC__MAX_EXTRA_RESIDUAL_BPS" is the maximum assumed size of the average residual magnitude */
    		if(bps + FLAC__MAX_EXTRA_RESIDUAL_BPS < threshold) {
    			for(partition = residual_sample = 0; partition < partitions; partition++) {
    				FLAC__uint32 abs_residual_partition_sum = 0;
    				end += default_partition_samples;
    				for( ; residual_sample < end; residual_sample++)
    					abs_residual_partition_sum += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */
    				abs_residual_partition_sums[partition] = abs_residual_partition_sum;
    			}
    		}
    		else { /* have to pessimistically use 64 bits for accumulator */
    			for(partition = residual_sample = 0; partition < partitions; partition++) {
    				FLAC__uint64 abs_residual_partition_sum64 = 0;
    				end += default_partition_samples;
    				for( ; residual_sample < end; residual_sample++)
    					abs_residual_partition_sum64 += abs(residual[residual_sample]); /* abs(INT_MIN) is undefined, but if the residual is INT_MIN we have bigger problems */
    				abs_residual_partition_sums[partition] = abs_residual_partition_sum64;
    			}
    		}
    	}
    
    	/* now merge partitions for lower orders */
    	{
    		uint32_t from_partition = 0, to_partition = partitions;
    		int partition_order;
    		for(partition_order = (int)max_partition_order - 1; partition_order >= (int)min_partition_order; partition_order--) {
    			uint32_t i;
    			partitions >>= 1;
    			for(i = 0; i < partitions; i++) {
    				abs_residual_partition_sums[to_partition++] =
    					abs_residual_partition_sums[from_partition  ] +
    					abs_residual_partition_sums[from_partition+1];
    				from_partition += 2;
    			}
    		}
    	}
    }
    
    void precompute_partition_info_escapes_(
    	const FLAC__int32 residual[],
    	uint32_t raw_bits_per_partition[],
    	uint32_t residual_samples,
    	uint32_t predictor_order,
    	uint32_t min_partition_order,
    	uint32_t max_partition_order
    )
    {
    	int partition_order;
    	uint32_t from_partition, to_partition = 0;
    	const uint32_t blocksize = residual_samples + predictor_order;
    
    	/* first do max_partition_order */
    	for(partition_order = (int)max_partition_order; partition_order >= 0; partition_order--) {
    		FLAC__int32 r;
    		FLAC__uint32 rmax;
    		uint32_t partition, partition_sample, partition_samples, residual_sample;
    		const uint32_t partitions = 1u << partition_order;
    		const uint32_t default_partition_samples = blocksize >> partition_order;
    
    		FLAC__ASSERT(default_partition_samples > predictor_order);
    
    		for(partition = residual_sample = 0; partition < partitions; partition++) {
    			partition_samples = default_partition_samples;
    			if(partition == 0)
    				partition_samples -= predictor_order;
    			rmax = 0;
    			for(partition_sample = 0; partition_sample < partition_samples; partition_sample++) {
    				r = residual[residual_sample++];
    				/* OPT: maybe faster: rmax |= r ^ (r>>31) */
    				if(r < 0)
    					rmax |= ~r;
    				else
    					rmax |= r;
    			}
    			/* now we know all residual values are in the range [-rmax-1,rmax] */
    			raw_bits_per_partition[partition] = rmax? FLAC__bitmath_ilog2(rmax) + 2 : 1;
    		}
    		to_partition = partitions;
    		break; /*@@@ yuck, should remove the 'for' loop instead */
    	}
    
    	/* now merge partitions for lower orders */
    	for(from_partition = 0, --partition_order; partition_order >= (int)min_partition_order; partition_order--) {
    		uint32_t m;
    		uint32_t i;
    		const uint32_t partitions = 1u << partition_order;
    		for(i = 0; i < partitions; i++) {
    			m = raw_bits_per_partition[from_partition];
    			from_partition++;
    			raw_bits_per_partition[to_partition] = flac_max(m, raw_bits_per_partition[from_partition]);
    			from_partition++;
    			to_partition++;
    		}
    	}
    }
    
    #ifdef EXACT_RICE_BITS_CALCULATION
    static inline uint32_t count_rice_bits_in_partition_(
    	const uint32_t rice_parameter,
    	const uint32_t partition_samples,
    	const FLAC__int32 *residual
    )
    {
    	uint32_t i;
    	uint64_t partition_bits =
    		FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */
    		(1+rice_parameter) * partition_samples /* 1 for unary stop bit + rice_parameter for the binary portion */
    	;
    	for(i = 0; i < partition_samples; i++)
    		partition_bits += ( (FLAC__uint32)((residual[i]<<1)^(residual[i]>>31)) >> rice_parameter );
    	return (uint32_t)(flac_min(partition_bits,UINT32_MAX)); // To make sure the return value doesn't overflow
    }
    #else
    static inline uint32_t count_rice_bits_in_partition_(
    	const uint32_t rice_parameter,
    	const uint32_t partition_samples,
    	const FLAC__uint64 abs_residual_partition_sum
    )
    {
    	return (uint32_t)(flac_min( // To make sure the return value doesn't overflow
    		FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_PARAMETER_LEN + /* actually could end up being FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN but err on side of 16bps */
    		(1+rice_parameter) * partition_samples + /* 1 for unary stop bit + rice_parameter for the binary portion */
    		(
    			rice_parameter?
    				(abs_residual_partition_sum >> (rice_parameter-1)) /* rice_parameter-1 because the real coder sign-folds instead of using a sign bit */
    				: (abs_residual_partition_sum << 1) /* can't shift by negative number, so reverse */
    		)
    		- (partition_samples >> 1),UINT32_MAX));
    		/* -(partition_samples>>1) to subtract out extra contributions to the abs_residual_partition_sum.
    		 * The actual number of bits used is closer to the sum(for all i in the partition) of  abs(residual[i])>>(rice_parameter-1)
    		 * By using the abs_residual_partition sum, we also add in bits in the LSBs that would normally be shifted out.
    		 * So the subtraction term tries to guess how many extra bits were contributed.
    		 * If the LSBs are randomly distributed, this should average to 0.5 extra bits per sample.
    		 */
    	;
    }
    #endif
    
    FLAC__bool set_partitioned_rice_(
    #ifdef EXACT_RICE_BITS_CALCULATION
    	const FLAC__int32 residual[],
    #endif
    	const FLAC__uint64 abs_residual_partition_sums[],
    	const uint32_t raw_bits_per_partition[],
    	const uint32_t residual_samples,
    	const uint32_t predictor_order,
    	const uint32_t rice_parameter_limit,
    	const uint32_t rice_parameter_search_dist,
    	const uint32_t partition_order,
    	const FLAC__bool search_for_escapes,
    	FLAC__EntropyCodingMethod_PartitionedRiceContents *partitioned_rice_contents,
    	uint32_t *bits
    )
    {
    	uint32_t rice_parameter, partition_bits;
    	uint32_t best_partition_bits, best_rice_parameter = 0;
    	uint32_t bits_ = FLAC__ENTROPY_CODING_METHOD_TYPE_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_ORDER_LEN;
    	uint32_t *parameters, *raw_bits;
    	uint32_t partition, residual_sample;
    	uint32_t partition_samples, partition_samples_base;
    	uint32_t partition_samples_fixed_point_divisor, partition_samples_fixed_point_divisor_base;
    	const uint32_t partitions = 1u << partition_order;
    	FLAC__uint64 mean;
    #ifdef ENABLE_RICE_PARAMETER_SEARCH
    	uint32_t min_rice_parameter, max_rice_parameter;
    #else
    	(void)rice_parameter_search_dist;
    #endif
    
    	FLAC__ASSERT(rice_parameter_limit <= FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_ESCAPE_PARAMETER);
    
    	parameters = partitioned_rice_contents->parameters;
    	raw_bits = partitioned_rice_contents->raw_bits;
    
    	partition_samples_base = (residual_samples+predictor_order) >> partition_order;
    
    	/* Integer division is slow. To speed up things, precalculate a fixed point
    	 * divisor, as all partitions except the first are the same size. 18 bits
    	 * are taken because maximum block size is 65535, max partition size for
    	 * partitions other than 0 is 32767 (15 bit), max abs residual is 2^31,
    	 * which leaves 18 bit */
    	partition_samples_fixed_point_divisor_base = 0x40000 / partition_samples_base;
    
    	for(partition = residual_sample = 0; partition < partitions; partition++) {
    		partition_samples = partition_samples_base;
    		if(partition > 0) {
    			partition_samples_fixed_point_divisor = partition_samples_fixed_point_divisor_base;
    		}
    		else {
    			if(partition_samples <= predictor_order)
    				return false;
    			else
    				partition_samples -= predictor_order;
    			partition_samples_fixed_point_divisor = 0x40000 / partition_samples;
    		}
    		mean = abs_residual_partition_sums[partition];
    		/* 'mean' is not a good name for the variable, it is
    		 * actually the sum of magnitudes of all residual values
    		 * in the partition, so the actual mean is
    		 * mean/partition_samples
    		 */
    		if(mean < 2 || (((mean - 1)*partition_samples_fixed_point_divisor)>>18) == 0)
    			rice_parameter = 0;
    		else
    			rice_parameter = FLAC__bitmath_ilog2_wide(((mean - 1)*partition_samples_fixed_point_divisor)>>18) + 1;
    
    		if(rice_parameter >= rice_parameter_limit) {
    			rice_parameter = rice_parameter_limit - 1;
    		}
    
    		best_partition_bits = UINT32_MAX;
    #ifdef ENABLE_RICE_PARAMETER_SEARCH
    		if(rice_parameter_search_dist) {
    			if(rice_parameter < rice_parameter_search_dist)
    				min_rice_parameter = 0;
    			else
    				min_rice_parameter = rice_parameter - rice_parameter_search_dist;
    			max_rice_parameter = rice_parameter + rice_parameter_search_dist;
    			if(max_rice_parameter >= rice_parameter_limit) {
    				max_rice_parameter = rice_parameter_limit - 1;
    			}
    		}
    		else
    			min_rice_parameter = max_rice_parameter = rice_parameter;
    
    		for(rice_parameter = min_rice_parameter; rice_parameter <= max_rice_parameter; rice_parameter++) {
    #endif
    #ifdef EXACT_RICE_BITS_CALCULATION
    			partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, residual+residual_sample);
    #else
    			partition_bits = count_rice_bits_in_partition_(rice_parameter, partition_samples, abs_residual_partition_sums[partition]);
    #endif
    			if(partition_bits < best_partition_bits) {
    				best_rice_parameter = rice_parameter;
    				best_partition_bits = partition_bits;
    			}
    #ifdef ENABLE_RICE_PARAMETER_SEARCH
    		}
    #endif
    		if(search_for_escapes) {
    			partition_bits = FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE2_PARAMETER_LEN + FLAC__ENTROPY_CODING_METHOD_PARTITIONED_RICE_RAW_LEN + raw_bits_per_partition[partition] * partition_samples;
    			if(partition_bits <= best_partition_bits && raw_bits_per_partition[partition] < 32) {
    				raw_bits[partition] = raw_bits_per_partition[partition];
    				best_rice_parameter = 0; /* will be converted to appropriate escape parameter later */
    				best_partition_bits = partition_bits;
    			}
    			else
    				raw_bits[partition] = 0;
    		}
    		parameters[partition] = best_rice_parameter;
    		if(best_partition_bits < UINT32_MAX - bits_) // To make sure _bits doesn't overflow
    			bits_ += best_partition_bits;
    		else
    			bits_ = UINT32_MAX;
    		residual_sample += partition_samples;
    	}
    
    	*bits = bits_;
    	return true;
    }
    
    uint32_t get_wasted_bits_(FLAC__int32 signal[], uint32_t samples)
    {
    	uint32_t i, shift;
    	FLAC__int32 x = 0;
    
    	for(i = 0; i < samples && !(x&1); i++)
    		x |= signal[i];
    
    	if(x == 0) {
    		shift = 0;
    	}
    	else {
    		for(shift = 0; !(x&1); shift++)
    			x >>= 1;
    	}
    
    	if(shift > 0) {
    		for(i = 0; i < samples; i++)
    			 signal[i] >>= shift;
    	}
    
    	return shift;
    }
    
    uint32_t get_wasted_bits_wide_(FLAC__int64 signal_wide[], FLAC__int32 signal[], uint32_t samples)
    {
    	uint32_t i, shift;
    	FLAC__int64 x = 0;
    
    	for(i = 0; i < samples && !(x&1); i++)
    		x |= signal_wide[i];
    
    	if(x == 0) {
    		shift = 1;
    	}
    	else {
    		for(shift = 0; !(x&1); shift++)
    			x >>= 1;
    	}
    
    	if(shift > 0) {
    		for(i = 0; i < samples; i++)
    			 signal[i] = (FLAC__int32)(signal_wide[i] >> shift);
    	}
    
    	return shift;
    }
    
    
    void append_to_verify_fifo_(verify_input_fifo *fifo, const FLAC__int32 * const input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples)
    {
    	uint32_t channel;
    
    	for(channel = 0; channel < channels; channel++)
    		memcpy(&fifo->data[channel][fifo->tail], &input[channel][input_offset], sizeof(FLAC__int32) * wide_samples);
    
    	fifo->tail += wide_samples;
    
    	FLAC__ASSERT(fifo->tail <= fifo->size);
    }
    
    void append_to_verify_fifo_interleaved_(verify_input_fifo *fifo, const FLAC__int32 input[], uint32_t input_offset, uint32_t channels, uint32_t wide_samples)
    {
    	uint32_t channel;
    	uint32_t sample, wide_sample;
    	uint32_t tail = fifo->tail;
    
    	sample = input_offset * channels;
    	for(wide_sample = 0; wide_sample < wide_samples; wide_sample++) {
    		for(channel = 0; channel < channels; channel++)
    			fifo->data[channel][tail] = input[sample++];
    		tail++;
    	}
    	fifo->tail = tail;
    
    	FLAC__ASSERT(fifo->tail <= fifo->size);
    }
    
    FLAC__StreamDecoderReadStatus verify_read_callback_(const FLAC__StreamDecoder *decoder, FLAC__byte buffer[], size_t *bytes, void *client_data)
    {
    	FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data;
    	const size_t encoded_bytes = encoder->private_->verify.output.bytes;
    	(void)decoder;
    
    	if(encoder->private_->verify.needs_magic_hack) {
    		FLAC__ASSERT(*bytes >= FLAC__STREAM_SYNC_LENGTH);
    		*bytes = FLAC__STREAM_SYNC_LENGTH;
    		memcpy(buffer, FLAC__STREAM_SYNC_STRING, *bytes);
    		encoder->private_->verify.needs_magic_hack = false;
    	}
    	else {
    		if(encoded_bytes == 0) {
    			/*
    			 * If we get here, a FIFO underflow has occurred,
    			 * which means there is a bug somewhere.
    			 */
    			FLAC__ASSERT(0);
    			return FLAC__STREAM_DECODER_READ_STATUS_ABORT;
    		}
    		else if(encoded_bytes < *bytes)
    			*bytes = encoded_bytes;
    		memcpy(buffer, encoder->private_->verify.output.data, *bytes);
    		encoder->private_->verify.output.data += *bytes;
    		encoder->private_->verify.output.bytes -= *bytes;
    	}
    
    	return FLAC__STREAM_DECODER_READ_STATUS_CONTINUE;
    }
    
    FLAC__StreamDecoderWriteStatus verify_write_callback_(const FLAC__StreamDecoder *decoder, const FLAC__Frame *frame, const FLAC__int32 * const buffer[], void *client_data)
    {
    	FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder *)client_data;
    	uint32_t channel;
    	const uint32_t channels = frame->header.channels;
    	const uint32_t blocksize = frame->header.blocksize;
    	const uint32_t bytes_per_block = sizeof(FLAC__int32) * blocksize;
    
    	(void)decoder;
    
    	if(encoder->protected_->state == FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR) {
    		/* This is set when verify_error_callback_ was called */
    		return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT;
    	}
    
    	for(channel = 0; channel < channels; channel++) {
    		if(0 != memcmp(buffer[channel], encoder->private_->verify.input_fifo.data[channel], bytes_per_block)) {
    			uint32_t i, sample = 0;
    			FLAC__int32 expect = 0, got = 0;
    
    			for(i = 0; i < blocksize; i++) {
    				if(buffer[channel][i] != encoder->private_->verify.input_fifo.data[channel][i]) {
    					sample = i;
    					expect = (FLAC__int32)encoder->private_->verify.input_fifo.data[channel][i];
    					got = (FLAC__int32)buffer[channel][i];
    					break;
    				}
    			}
    			FLAC__ASSERT(i < blocksize);
    			FLAC__ASSERT(frame->header.number_type == FLAC__FRAME_NUMBER_TYPE_SAMPLE_NUMBER);
    			encoder->private_->verify.error_stats.absolute_sample = frame->header.number.sample_number + sample;
    			encoder->private_->verify.error_stats.frame_number = (uint32_t)(frame->header.number.sample_number / blocksize);
    			encoder->private_->verify.error_stats.channel = channel;
    			encoder->private_->verify.error_stats.sample = sample;
    			encoder->private_->verify.error_stats.expected = expect;
    			encoder->private_->verify.error_stats.got = got;
    			encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_MISMATCH_IN_AUDIO_DATA;
    			return FLAC__STREAM_DECODER_WRITE_STATUS_ABORT;
    		}
    	}
    	/* dequeue the frame from the fifo */
    	encoder->private_->verify.input_fifo.tail -= blocksize;
    	for(channel = 0; channel < channels; channel++)
    		memmove(&encoder->private_->verify.input_fifo.data[channel][0], &encoder->private_->verify.input_fifo.data[channel][blocksize], encoder->private_->verify.input_fifo.tail * sizeof(encoder->private_->verify.input_fifo.data[0][0]));
    	return FLAC__STREAM_DECODER_WRITE_STATUS_CONTINUE;
    }
    
    void verify_metadata_callback_(const FLAC__StreamDecoder *decoder, const FLAC__StreamMetadata *metadata, void *client_data)
    {
    	(void)decoder, (void)metadata, (void)client_data;
    }
    
    void verify_error_callback_(const FLAC__StreamDecoder *decoder, FLAC__StreamDecoderErrorStatus status, void *client_data)
    {
    	FLAC__StreamEncoder *encoder = (FLAC__StreamEncoder*)client_data;
    	(void)decoder, (void)status;
    	encoder->protected_->state = FLAC__STREAM_ENCODER_VERIFY_DECODER_ERROR;
    }
    
    FLAC__StreamEncoderReadStatus file_read_callback_(const FLAC__StreamEncoder *encoder, FLAC__byte buffer[], size_t *bytes, void *client_data)
    {
    	(void)client_data;
    
    	*bytes = fread(buffer, 1, *bytes, encoder->private_->file);
    	if (*bytes == 0) {
    		if (feof(encoder->private_->file))
    			return FLAC__STREAM_ENCODER_READ_STATUS_END_OF_STREAM;
    		else if (ferror(encoder->private_->file))
    			return FLAC__STREAM_ENCODER_READ_STATUS_ABORT;
    	}
    	return FLAC__STREAM_ENCODER_READ_STATUS_CONTINUE;
    }
    
    FLAC__StreamEncoderSeekStatus file_seek_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 absolute_byte_offset, void *client_data)
    {
    	(void)client_data;
    
    	if(fseeko(encoder->private_->file, (FLAC__off_t)absolute_byte_offset, SEEK_SET) < 0)
    		return FLAC__STREAM_ENCODER_SEEK_STATUS_ERROR;
    	else
    		return FLAC__STREAM_ENCODER_SEEK_STATUS_OK;
    }
    
    FLAC__StreamEncoderTellStatus file_tell_callback_(const FLAC__StreamEncoder *encoder, FLAC__uint64 *absolute_byte_offset, void *client_data)
    {
    	FLAC__off_t offset;
    
    	(void)client_data;
    
    	offset = ftello(encoder->private_->file);
    
    	if(offset < 0) {
    		return FLAC__STREAM_ENCODER_TELL_STATUS_ERROR;
    	}
    	else {
    		*absolute_byte_offset = (FLAC__uint64)offset;
    		return FLAC__STREAM_ENCODER_TELL_STATUS_OK;
    	}
    }
    
    #ifdef FLAC__VALGRIND_TESTING
    static size_t local__fwrite(const void *ptr, size_t size, size_t nmemb, FILE *stream)
    {
    	size_t ret = fwrite(ptr, size, nmemb, stream);
    	if(!ferror(stream))
    		fflush(stream);
    	return ret;
    }
    #else
    #define local__fwrite fwrite
    #endif
    
    FLAC__StreamEncoderWriteStatus file_write_callback_(const FLAC__StreamEncoder *encoder, const FLAC__byte buffer[], size_t bytes, uint32_t samples, uint32_t current_frame, void *client_data)
    {
    	(void)client_data, (void)current_frame;
    
    	if(local__fwrite(buffer, sizeof(FLAC__byte), bytes, encoder->private_->file) == bytes) {
    		FLAC__bool call_it = 0 != encoder->private_->progress_callback && (
    #if FLAC__HAS_OGG
    			/* We would like to be able to use 'samples > 0' in the
    			 * clause here but currently because of the nature of our
    			 * Ogg writing implementation, 'samples' is always 0 (see
    			 * ogg_encoder_aspect.c).  The downside is extra progress
    			 * callbacks.
    			 */
    			encoder->private_->is_ogg? true :
    #endif
    			samples > 0
    		);
    		if(call_it) {
    			/* NOTE: We have to add +bytes, +samples, and +1 to the stats
    			 * because at this point in the callback chain, the stats
    			 * have not been updated.  Only after we return and control
    			 * gets back to write_frame_() are the stats updated
    			 */
    			encoder->private_->progress_callback(encoder, encoder->private_->bytes_written+bytes, encoder->private_->samples_written+samples, encoder->private_->frames_written+(samples?1:0), encoder->private_->total_frames_estimate, encoder->private_->client_data);
    		}
    		return FLAC__STREAM_ENCODER_WRITE_STATUS_OK;
    	}
    	else
    		return FLAC__STREAM_ENCODER_WRITE_STATUS_FATAL_ERROR;
    }
    
    /*
     * This will forcibly set stdout to binary mode (for OSes that require it)
     */
    FILE *get_binary_stdout_(void)
    {
    	/* if something breaks here it is probably due to the presence or
    	 * absence of an underscore before the identifiers 'setmode',
    	 * 'fileno', and/or 'O_BINARY'; check your system header files.
    	 */
    #if defined _MSC_VER || defined __MINGW32__
    	_setmode(_fileno(stdout), _O_BINARY);
    #elif defined __EMX__
    	setmode(fileno(stdout), O_BINARY);
    #endif
    
    	return stdout;
    }