• envelope.c
  • /********************************************************************
     *                                                                  *
     * THIS FILE IS PART OF THE OggVorbis SOFTWARE CODEC SOURCE CODE.   *
     * USE, DISTRIBUTION AND REPRODUCTION OF THIS LIBRARY SOURCE IS     *
     * GOVERNED BY A BSD-STYLE SOURCE LICENSE INCLUDED WITH THIS SOURCE *
     * IN 'COPYING'. PLEASE READ THESE TERMS BEFORE DISTRIBUTING.       *
     *                                                                  *
     * THE OggVorbis SOURCE CODE IS (C) COPYRIGHT 1994-2009             *
     * by the Xiph.Org Foundation https://xiph.org/                     *
     *                                                                  *
     ********************************************************************
    
     function: PCM data envelope analysis
    
     ********************************************************************/
    
    #include <stdlib.h>
    #include <string.h>
    #include <stdio.h>
    #include <math.h>
    #include <ogg/ogg.h>
    #include "vorbis/codec.h"
    #include "codec_internal.h"
    
    #include "os.h"
    #include "scales.h"
    #include "envelope.h"
    #include "mdct.h"
    #include "misc.h"
    
    void _ve_envelope_init(envelope_lookup *e,vorbis_info *vi){
      codec_setup_info *ci=vi->codec_setup;
      vorbis_info_psy_global *gi=&ci->psy_g_param;
      int ch=vi->channels;
      int i,j;
      int n=e->winlength=128;
      e->searchstep=64; /* not random */
    
      e->minenergy=gi->preecho_minenergy;
      e->ch=ch;
      e->storage=128;
      e->cursor=ci->blocksizes[1]/2;
      e->mdct_win=_ogg_calloc(n,sizeof(*e->mdct_win));
      mdct_init(&e->mdct,n);
    
      for(i=0;i<n;i++){
        e->mdct_win[i]=sin(i/(n-1.)*M_PI);
        e->mdct_win[i]*=e->mdct_win[i];
      }
    
      /* magic follows */
      e->band[0].begin=2;  e->band[0].end=4;
      e->band[1].begin=4;  e->band[1].end=5;
      e->band[2].begin=6;  e->band[2].end=6;
      e->band[3].begin=9;  e->band[3].end=8;
      e->band[4].begin=13;  e->band[4].end=8;
      e->band[5].begin=17;  e->band[5].end=8;
      e->band[6].begin=22;  e->band[6].end=8;
    
      for(j=0;j<VE_BANDS;j++){
        n=e->band[j].end;
        e->band[j].window=_ogg_malloc(n*sizeof(*e->band[0].window));
        for(i=0;i<n;i++){
          e->band[j].window[i]=sin((i+.5)/n*M_PI);
          e->band[j].total+=e->band[j].window[i];
        }
        e->band[j].total=1./e->band[j].total;
      }
    
      e->filter=_ogg_calloc(VE_BANDS*ch,sizeof(*e->filter));
      e->mark=_ogg_calloc(e->storage,sizeof(*e->mark));
    
    }
    
    void _ve_envelope_clear(envelope_lookup *e){
      int i;
      mdct_clear(&e->mdct);
      for(i=0;i<VE_BANDS;i++)
        _ogg_free(e->band[i].window);
      _ogg_free(e->mdct_win);
      _ogg_free(e->filter);
      _ogg_free(e->mark);
      memset(e,0,sizeof(*e));
    }
    
    /* fairly straight threshhold-by-band based until we find something
       that works better and isn't patented. */
    
    static int _ve_amp(envelope_lookup *ve,
                       vorbis_info_psy_global *gi,
                       float *data,
                       envelope_band *bands,
                       envelope_filter_state *filters){
      long n=ve->winlength;
      int ret=0;
      long i,j;
      float decay;
    
      /* we want to have a 'minimum bar' for energy, else we're just
         basing blocks on quantization noise that outweighs the signal
         itself (for low power signals) */
    
      float minV=ve->minenergy;
      float *vec=alloca(n*sizeof(*vec));
    
      /* stretch is used to gradually lengthen the number of windows
         considered prevoius-to-potential-trigger */
      int stretch=max(VE_MINSTRETCH,ve->stretch/2);
      float penalty=gi->stretch_penalty-(ve->stretch/2-VE_MINSTRETCH);
      if(penalty<0.f)penalty=0.f;
      if(penalty>gi->stretch_penalty)penalty=gi->stretch_penalty;
    
      /*_analysis_output_always("lpcm",seq2,data,n,0,0,
        totalshift+pos*ve->searchstep);*/
    
     /* window and transform */
      for(i=0;i<n;i++)
        vec[i]=data[i]*ve->mdct_win[i];
      mdct_forward(&ve->mdct,vec,vec);
    
      /*_analysis_output_always("mdct",seq2,vec,n/2,0,1,0); */
    
      /* near-DC spreading function; this has nothing to do with
         psychoacoustics, just sidelobe leakage and window size */
      {
        float temp=vec[0]*vec[0]+.7*vec[1]*vec[1]+.2*vec[2]*vec[2];
        int ptr=filters->nearptr;
    
        /* the accumulation is regularly refreshed from scratch to avoid
           floating point creep */
        if(ptr==0){
          decay=filters->nearDC_acc=filters->nearDC_partialacc+temp;
          filters->nearDC_partialacc=temp;
        }else{
          decay=filters->nearDC_acc+=temp;
          filters->nearDC_partialacc+=temp;
        }
        filters->nearDC_acc-=filters->nearDC[ptr];
        filters->nearDC[ptr]=temp;
    
        decay*=(1./(VE_NEARDC+1));
        filters->nearptr++;
        if(filters->nearptr>=VE_NEARDC)filters->nearptr=0;
        decay=todB(&decay)*.5-15.f;
      }
    
      /* perform spreading and limiting, also smooth the spectrum.  yes,
         the MDCT results in all real coefficients, but it still *behaves*
         like real/imaginary pairs */
      for(i=0;i<n/2;i+=2){
        float val=vec[i]*vec[i]+vec[i+1]*vec[i+1];
        val=todB(&val)*.5f;
        if(val<decay)val=decay;
        if(val<minV)val=minV;
        vec[i>>1]=val;
        decay-=8.;
      }
    
      /*_analysis_output_always("spread",seq2++,vec,n/4,0,0,0);*/
    
      /* perform preecho/postecho triggering by band */
      for(j=0;j<VE_BANDS;j++){
        float acc=0.;
        float valmax,valmin;
    
        /* accumulate amplitude */
        for(i=0;i<bands[j].end;i++)
          acc+=vec[i+bands[j].begin]*bands[j].window[i];
    
        acc*=bands[j].total;
    
        /* convert amplitude to delta */
        {
          int p,this=filters[j].ampptr;
          float postmax,postmin,premax=-99999.f,premin=99999.f;
    
          p=this;
          p--;
          if(p<0)p+=VE_AMP;
          postmax=max(acc,filters[j].ampbuf[p]);
          postmin=min(acc,filters[j].ampbuf[p]);
    
          for(i=0;i<stretch;i++){
            p--;
            if(p<0)p+=VE_AMP;
            premax=max(premax,filters[j].ampbuf[p]);
            premin=min(premin,filters[j].ampbuf[p]);
          }
    
          valmin=postmin-premin;
          valmax=postmax-premax;
    
          /*filters[j].markers[pos]=valmax;*/
          filters[j].ampbuf[this]=acc;
          filters[j].ampptr++;
          if(filters[j].ampptr>=VE_AMP)filters[j].ampptr=0;
        }
    
        /* look at min/max, decide trigger */
        if(valmax>gi->preecho_thresh[j]+penalty){
          ret|=1;
          ret|=4;
        }
        if(valmin<gi->postecho_thresh[j]-penalty)ret|=2;
      }
    
      return(ret);
    }
    
    #if 0
    static int seq=0;
    static ogg_int64_t totalshift=-1024;
    #endif
    
    long _ve_envelope_search(vorbis_dsp_state *v){
      vorbis_info *vi=v->vi;
      codec_setup_info *ci=vi->codec_setup;
      vorbis_info_psy_global *gi=&ci->psy_g_param;
      envelope_lookup *ve=((private_state *)(v->backend_state))->ve;
      long i,j;
    
      int first=ve->current/ve->searchstep;
      int last=v->pcm_current/ve->searchstep-VE_WIN;
      if(first<0)first=0;
    
      /* make sure we have enough storage to match the PCM */
      if(last+VE_WIN+VE_POST>ve->storage){
        ve->storage=last+VE_WIN+VE_POST; /* be sure */
        ve->mark=_ogg_realloc(ve->mark,ve->storage*sizeof(*ve->mark));
      }
    
      for(j=first;j<last;j++){
        int ret=0;
    
        ve->stretch++;
        if(ve->stretch>VE_MAXSTRETCH*2)
          ve->stretch=VE_MAXSTRETCH*2;
    
        for(i=0;i<ve->ch;i++){
          float *pcm=v->pcm[i]+ve->searchstep*(j);
          ret|=_ve_amp(ve,gi,pcm,ve->band,ve->filter+i*VE_BANDS);
        }
    
        ve->mark[j+VE_POST]=0;
        if(ret&1){
          ve->mark[j]=1;
          ve->mark[j+1]=1;
        }
    
        if(ret&2){
          ve->mark[j]=1;
          if(j>0)ve->mark[j-1]=1;
        }
    
        if(ret&4)ve->stretch=-1;
      }
    
      ve->current=last*ve->searchstep;
    
      {
        long centerW=v->centerW;
        long testW=
          centerW+
          ci->blocksizes[v->W]/4+
          ci->blocksizes[1]/2+
          ci->blocksizes[0]/4;
    
        j=ve->cursor;
    
        while(j<ve->current-(ve->searchstep)){/* account for postecho
                                                 working back one window */
          if(j>=testW)return(1);
    
          ve->cursor=j;
    
          if(ve->mark[j/ve->searchstep]){
            if(j>centerW){
    
    #if 0
              if(j>ve->curmark){
                float *marker=alloca(v->pcm_current*sizeof(*marker));
                int l,m;
                memset(marker,0,sizeof(*marker)*v->pcm_current);
                fprintf(stderr,"mark! seq=%d, cursor:%fs time:%fs\n",
                        seq,
                        (totalshift+ve->cursor)/44100.,
                        (totalshift+j)/44100.);
                _analysis_output_always("pcmL",seq,v->pcm[0],v->pcm_current,0,0,totalshift);
                _analysis_output_always("pcmR",seq,v->pcm[1],v->pcm_current,0,0,totalshift);
    
                _analysis_output_always("markL",seq,v->pcm[0],j,0,0,totalshift);
                _analysis_output_always("markR",seq,v->pcm[1],j,0,0,totalshift);
    
                for(m=0;m<VE_BANDS;m++){
                  char buf[80];
                  sprintf(buf,"delL%d",m);
                  for(l=0;l<last;l++)marker[l*ve->searchstep]=ve->filter[m].markers[l]*.1;
                  _analysis_output_always(buf,seq,marker,v->pcm_current,0,0,totalshift);
                }
    
                for(m=0;m<VE_BANDS;m++){
                  char buf[80];
                  sprintf(buf,"delR%d",m);
                  for(l=0;l<last;l++)marker[l*ve->searchstep]=ve->filter[m+VE_BANDS].markers[l]*.1;
                  _analysis_output_always(buf,seq,marker,v->pcm_current,0,0,totalshift);
                }
    
                for(l=0;l<last;l++)marker[l*ve->searchstep]=ve->mark[l]*.4;
                _analysis_output_always("mark",seq,marker,v->pcm_current,0,0,totalshift);
    
    
                seq++;
    
              }
    #endif
    
              ve->curmark=j;
              if(j>=testW)return(1);
              return(0);
            }
          }
          j+=ve->searchstep;
        }
      }
    
      return(-1);
    }
    
    int _ve_envelope_mark(vorbis_dsp_state *v){
      envelope_lookup *ve=((private_state *)(v->backend_state))->ve;
      vorbis_info *vi=v->vi;
      codec_setup_info *ci=vi->codec_setup;
      long centerW=v->centerW;
      long beginW=centerW-ci->blocksizes[v->W]/4;
      long endW=centerW+ci->blocksizes[v->W]/4;
      if(v->W){
        beginW-=ci->blocksizes[v->lW]/4;
        endW+=ci->blocksizes[v->nW]/4;
      }else{
        beginW-=ci->blocksizes[0]/4;
        endW+=ci->blocksizes[0]/4;
      }
    
      if(ve->curmark>=beginW && ve->curmark<endW)return(1);
      {
        long first=beginW/ve->searchstep;
        long last=endW/ve->searchstep;
        long i;
        for(i=first;i<last;i++)
          if(ve->mark[i])return(1);
      }
      return(0);
    }
    
    void _ve_envelope_shift(envelope_lookup *e,long shift){
      int smallsize=e->current/e->searchstep+VE_POST; /* adjust for placing marks
                                                         ahead of ve->current */
      int smallshift=shift/e->searchstep;
    
      memmove(e->mark,e->mark+smallshift,(smallsize-smallshift)*sizeof(*e->mark));
    
    #if 0
      for(i=0;i<VE_BANDS*e->ch;i++)
        memmove(e->filter[i].markers,
                e->filter[i].markers+smallshift,
                (1024-smallshift)*sizeof(*(*e->filter).markers));
      totalshift+=shift;
    #endif
    
      e->current-=shift;
      if(e->curmark>=0)
        e->curmark-=shift;
      e->cursor-=shift;
    }